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MODULE 1

CONICS

1.1 Conic Sections and Conics

1.1.1 Conic sections

Conic Section is the name given to the shapes that we obtain

by taking different plane slices through a double cone. The

shapes that we obtain from these cross sections are as drawn

below.
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1.1.2 Focus-Directrix Definition of the Non-

Degenerate Conics

Earlier we defined the conic sections as the curves of inter-

section of a double cone with a plane. We have seen that the

circle can be defined in a different way: as the set of points

at a fixed distance from a fixed point. Here we give a method

for constructing the other non-degenerate conics, the parabola,

ellipse and hyperbola, as sets of points that satisfy a some-

what similar condition involving distances. Later we shall give

a careful proof that each non-degenerate conic section is a non-

degenerate (plane) conic, and vice-versa.

Eccentricity A non-degenerate conic is an ellipse if 0 ≤
e < 1, a parabola if e = 1, or a hyperbola if e > 1.
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Parabola (e = 1)

A parabola is defined to be the set of points P in the plane

whose distance from a fixed point F is equal to their distance

from a fixed line d. We obtain a parabola in standard form if

we choose

1. the focus F to lie on the x-axis, and to have coordinates

(a, 0), a > 0;

2. the directrix d to be the line with equation x = −a.

Standard form of Parabola A parabola in standard

form has equation

y2 = 4ax, where a > 0

It has focus (a, 0) and directrix x = −a and it can be

described by the parametric equations

x = at2, y = 2at (t ∈ R).

Example 1. Equation of a parabola E is y2 = 2x with para-
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metric equations x = 1
2
t2, y = t(t ∈ R).

(a) Write down the focus, vertex, axis and directrix of E.

(b) Determine the equation of the chord that joins distinct

points P and Q on E with parameters t1 and t2 , respec-

tively. Determine the condition on t1 and t2 such that

the chord PQ passes through the focus of E.

Solution: (a) The parabola E is the parabola in standard form

where 4a = 2, or a = 1
2
.

It follows that the focus of E is (1
2
, 0), its vertex is (0, 0), its

axis is the x− axis, and the equation of its directrix is x = 1
2
.

(b) The coordinates of P and Q are (1
2
t2
1
, t1) and (1

2
t2
2
, t2)

respectively. So if t2
1
̸= t2

2
. the slope (or gradient, as it is

sometimes called) of PQ is given by

m =
t1 − t2

1
2
t2
1
− 1

2
t2
2

=
t1 − t2

1
2
[t2

1
− t2

2
]
=

2

t1 + t2

8



Since (1
2
t2
1
, t1) lies on the line PQ, it follows that the equation

of PQ is

y − t1 =
2

t1 + t2
[x− 1

2
t2
1
].

Multiplying both sides by t1 + t2 , we get

(t1 + t2)(y − t1) = 2x− t2
1
,

So that

(t1 + t2)y − t2
1
− t1t2 = 2x− t2

1

or

(t1 + t2)y = 2x+ t1t2 . (1)

If, however, t2
1
= t2

2
, then since t1 ̸= t2 we have t1 = −t2 . Thus

PQ parallel to the y−axis, and so has equation x = 1
2
t2
1
; so in

this case too, PQ has equation given by (1).

The chord PQ with equation (1) passes through the focus

(1
2
, 0) if (t1 + t2)0 = 1 + t1t2 in other words, if t1t2 = −1. □

Problem 1. Consider the parabola E with equation y2 = x

and parametric equations x = t2, y = t(t ∈ R).

(a) Write down the focus, vertex, axis and directrix of E.

(b) Determine the equation of the chord that joins distinct

points P and Q on E with parameters t1 and t2 , respectively.

(c) Determine the condition on t1 and t2 (and so on P and

Q) that the focus of E is the midpoint of the chord PQ.

9



Solution:

(a) The parabola E is the parabola in standard form where

4a = 1, or a = 1
4
. It follows that the focus of E is

(
1
4
, 0
)
,

the vertex is (0, 0), the axis is the x -axis, and the equa-

tion of the directrix is x = −1
4
.

(b) The coordinates of P and Q are
(
t2
1
, t1
)
and

(
t2
2
, t2
)
, re-

spectively. So, if t2
1
̸= t2

2
, the slope of PQ is given by

m =
t1 − t2
t2
1
− t2

2

=
1

t1 + t2

Since
(
t2
1
, t1
)
lies on the line PQ, it follows that the equa-

tion of PQ is

y − t1 =
1

t1 + t2

(
x− t2

1

)
.

Multiplying both sides by t1 + t2 , we get

(t1 + t2) (y − t1) = x− t2
1

so that

(t1 + t2) y − t2
1
− t1t2 = x− t2

1
,

or

(t1 + t2) y = x+ t1t2 (∗)

10



If, however, t2
1
= t2

2
, then since t1 ̸= t2 we have t1 = −t2 .

Thus PQ is parallel to the y -axis, and so has equation

x = t2
1
; so in this case too, PQ has equation (∗).

(c) The midpoint of PQ is the point(
1

2

(
t2
1
+ t2

2

)
,
1

2
(t1 + t2)

)
.

This is the focus
(
1
4
, 0
)
if(

1

2

(
t2
1
+ t2

2

)
,
1

2
(t1 + t2)

)
=

(
1

4
, 0

)
.

Comparing the second coordinates, we deduce that t2 =

−t1 . Comparing the first coordinates, we deduce that

1

2

(
t2
1
+ t2

2

)
=

1

4

so that t2
1
= 1

4
. It follows that t1 = ±1

2
, and so that

t2 = ∓1
2
, respectively.

When t = 1
2
, the point (t2, t) =

(
1
4
, 1
2

)
; and when t = −1

2
,

the point (t2, t) =
(
1
4
,−1

2

)
. It follows that the points P

and Q must be
(
1
4
, 1
2

)
and

(
1
4
,−1

2

)
.

□
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Ellipse (0 ≤ e < 1)

We define an ellipse with eccentricity zero to be a circle.

Also we define an ellipse with eccentricity e (where 0 < e < 1)

to be the set of points P in the plane whose distance from a

fixed point F is e times their distance from a fixed line d. We

obtain such an ellipse in standard form if we choose

1. the focus F to lie on the x-axis, and to have coordinates

(ae, 0), a > 0;

2. the directrix d to be the line with equation x = a/e.

Ellipse in Standard Form An ellipse in standard form

has equation

x2

a2
+
y2

b2
= 1, where a ≥ b > 0, b2 = a2(1− e2), 0 ≤ e < 1.

It can be described by the parametric equations x =

acost, y = bsint, (t ∈ (−π, π]). If e > 0, it has foci

(±ae, 0) and directrices x = ±a/e.

Example 2. Let PQ be an arbitrary chord of the ellipse with
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equation
x2

a2
+

y2

b2
= 1,

Let M be the midpoint of PQ. Prove that the following ex-

pression is independent of the choice of P and Q :

slope of OM × slope of PQ.

Solution: Let P and Q have the parametric coordinates

(acost1 , bsint1) and (acost2 , bsint2), respectively. It follows

that M has coordinates (a
2
(cost1 + cost2),

b
2
(sint1 + sint2)).

Now,

the slope of OM =
b(sint1 + sint2)

a(cost1 + cost2)

and

the slope of PQ =
b(sint1 − sint2)

a(cost1 − cost2)
,

13



so,

slope of OM × slope of PQ =
b(sint1 + sint2)

a(cost1 + cost2)
· b(sint1 − sint2)

a(cost1 − cost2)

=
b2

a2
(sin2t1 − sin2t2)

(cos2t1 − cos2t2)

=
b2

a2
(sin2t1 − sin2t2)

(1− sin2t1)− (1− sin2t2)

=
−b2

a2
.

which is independent of the values of t1 and t2 . □

Problem 2. Let P be an arbitrary point on the ellipse with

equation x2

a2
+ y2

b2
= 1, and focus F (ae, 0). LetM be the midpoint

of FP. Prove that M lies on an ellipse whose centre is midway

between the origin and F.

Solution: Let P have coordinates (a cos t, b sin t). Since the

coordinates of F are (ae, 0), the coordinates ofM , the midpoint

of FP ,is (
1

2
(a cos t+ ae),

1

2
(b sin t+ 0)

)
.
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Thus M lies on the curve in R2 with parametric equations

x =
1

2
(a cos t+ ae), y =

1

2
b sin t

We can rearrange these equations in the form

cos t =
2x− ae

a
, sin t =

2y

b
;

squaring and adding these, we get(
2x− ae

a

)2

+

(
2y

b

)2

= 1

We can rearrange this equation in the form(
x− 1

2
ae
)2

(a/2)2
+

y2

(b/2)2
= 1

thus M lies on an ellipse with centre
(
1
2
ae, 0

)
, the point

midway between the origin and F . □

Hyperbola (e > 1)

A hyperbola is the set of points P in the plane whose dis-

tance from a fixed point F , called focus of the hyperbola is e

times their distance from a fixed line d,called directrix of the

hyperbola, where e > 1. We obtain a hyperbola in standard

form if we choose

15



1. the focus F to lie on the x -axis, and to have coordinates

(ae, 0), a > 0;

2. the directrix d to be the line with equation x = a/e.

Let P (x, y) be an arbitrary point on the hyperbola, and let

M be the foot of the perpendicular from P to the directrix.

Since FP = e · PM , by the definition of the hyperbola, it

follows that FP 2 = e2 · PM2; we may rewrite this equation in

terms of coordinates as

(x− ae)2 + y2 = e2
(
x− a

e

)2
= (ex− a)2

Multiplying out the brackets we get

x2 − 2aex+ a2e2 + y2 = e2x2 − 2aex+ a2

which simplifies to

x2
(
e2 − 1

)
− y2 = a2

(
e2 − 1

)
16



or
x2

a2
− y2

a2 (e2 − 1)
= 1.

Substituting b for a
√
e2 − 1, so that b2 = a2 (e2 − 1), we obtain

the standard form of the equation of the hyperbola

x2

a2
− y2

b2
= 1

Notice that this equation is symmetrical in x and symmetrical

in y, so that the hyperbola also has a second focus F ′(−ae, 0)

and a second directrix d′ with equation x = −a/e.

The hyperbola intersects the x -axis at the points (±a, 0).

We call the segment joining the points (±a, 0) the major axis

or transverse axis of the hyperbola, and the segment joining the

points (0,±b) the minor axis or conjugate axis of the hyperbola

(notice that this is NOT a chord of the hyperbola). The origin

is the centre of this hyperbola.

Notice also that each point with coordinates (a sec t, b tan t),

17



where t is not an odd multiple of π/2, lies on the hyperbola,

since
a2 sec2 t

a2
− b2 tan2 t

b2
= 1

Then, just as for the parabola, we can check that

x = a sec t, y = b tan t (t ∈ (−π/2, π/2) ∪ (π/2, 3π/2))

gives a parametric representation of the hyperbola.

Two other features of the shape of the hyperbola stand

out. Firstly, the hyperbola consists of two separate curves or

branches. Secondly, the lines with equations

x2

a2
− y2

b2
= 0, or y = ± b

a
x

divide the plane into two pairs of opposite sectors; the branches

of the hyperbola lie in one pair. As x → ±∞ the branches of

the hyperbola get closer and closer to these two lines. We call

the lines y = ±(b/a)x the asymptotes of the hyperbola.

We summarize the above facts as follows.

18



Hyperbola in Standard Form. A hyperbola in standard

form has equation

x2

a2
− y2

b2
= 1, where b2 = a2

(
e2 − 1

)
, a > 0, e > 1

It has foci (±ae, 0) and directrices x = ±a/e; and it can be

described by the parametric equations

x = a sec t, y = b tan t (t ∈ (−π/2, π/2) ∪ (π/2, 3π/2)).

Problem 3. Let P be a point
(
sec t, 1√

2
tan t

)
, where t ∈

(−π/2, π/2) ∪ (π/2, 3π/2)), on the hyperbola E with equation

x2− 2y2 = 1

(a) Determine the foci F and F ′ of E.

(b) Determine the slopes of FP and F ′P , when these lines

are not parallel to the y -axis.

(c) Determine the point P in the first quadrant on E for

which FP is perpendicular to F ′P .

Solution:

(a) This hyperbola is of the form x2

a2
− y2

b2
= 1 with a = 1 and

b2 = 1
2
, so that b = 1/

√
2.

If e denotes the eccentricity of the hyperbola E, so that

19



b2 = a2 (e2 − 1), we have

1

2
= e2 − 1

it follows that e2 = 3
2
and so e =

√
3
2
.

In general the foci are (±ae, 0); it follows that here the

foci are
(
±
√

3
2
, 0
)
.

(b) Let F and F ′ be
(√

3
2
, 0
)

and
(
−
√

3
2
, 0
)
, respectively.

(It does not really matter which way round these are cho-

sen.) Then the slope of FP is

1√
2
tan t− 0

sec t−
√

3
2

=
tan t√

2 sec t−
√
3

where we may assume that sec t ̸=
√

3
2
, since FP is not

parallel to the y -axis; and the slope of F ′P is

1√
2
tan t− 0

sec t+
√

3
2

=
tan t√

2 sec t+
√
3

where we may assume that sec t ̸= −
√

3
2
, since F ′P is

not parallel to the y -axis.

(c) When FP is perpendicular to F ′P , we have that

tan t√
2 sec t−

√
3
· tan t√

2 sec t+
√
3
= −1

20



We may rewrite this in the form

tan2 t

2 sec2 t− 3
= −1

so that 2 sec2 t− 3 + tan2 t = 0; since sec2 t = 1 + tan2 t,

it follows that we must have 3 tan2 t = 1. Since we are

looking for a point P in the first quadrant, we choose

tan t = 1/
√
3.

When tan t = 1/
√
3, we have sec2 t = 1+ 1

3
= 4

3
. Since we

are looking for a point P in the first quadrant, we choose

sec t = 2/
√
3.

It follows that the required point P has coordinates(
2√
3
,
1√
2
· 1√

3

)
=

(
2√
3
,
1√
6

)

□

Rectangular Hyperbola (e =
√
2)

When the eccentricity e of a hyperbola takes the value
√
2,

then e2 = 2 and b = a. Then the asymptotes of the hyperbola

have equations y = ±x, so that in particular they are at right

angles. A hyperbola whose asymptotes are at right angles is

called a rectangular hyperbola.
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Then, if we use the asymptotes as new x - and y -axes

(instead of the original x - and y -axes), it turns out that the

equation of the hyperbola can be written in the form xy = c2,

for some positive number c.

The rectangular hyperbola with equation xy = c2 has the

origin as its centre, and the x - and y -axes as its asymptotes.

Also, each point on it can be uniquely represented by the para-

metric representation

x = ct, y =
c

t
where t ̸= 0.

22



We shall use rectangular hyperbolas later on.

1.1.3 Polar Equation of a Conic

For many applications it is useful to describe the equation

of a non-degenerate conic in terms of polar coordinates r and

θ. A point P (x, y) in the plane has polar coordinates (r, θ)

if r is the distance OP (where O is the origin) and θ is the

anticlockwise angle between OP and the positive direction of

the x -axis.

Take the origin O to be the focus of the conic, d the directrix,

M the foot of the perpendicular from a point P on the conic

to d,N the foot of the perpendicular from O to d, and Q the

foot of the perpendicular from P to ON .

Then by the definition of the conic, we have OP = e · PM.

23



We can rewrite this as

r = e(ON −OQ)

= e ·ON − er cos θ

or

r(1 + e cos θ) = e ·ON

= l, a constant.

It follows that the equation of the conic can be expressed in

the form

r =
l

1 + e cos θ
.

The polar form of the equation of a conic is often used in prob-

lems in Dynamics: for example, in determining the motion of

a planet or of a comet round the Sun.

1.1.4 Focal Distance Properties of Ellipse

and Hyperbola

We now prove two simple but surprising results. We deal

with the ellipse first.

Theorem 1. (Sum of Focal Distances of Ellipse) Let

E be an ellipse with major axis (−a, a) and foci F and F ′.

Then, if P is a point on the ellipse, FP + PF ′ = 2a. In

particular, FP + PF ′ is constant for all points P on the

24
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Proof: Let d and d′ be the directrices of the ellipse that cor-

respond to the foci F and F ′, respectively. Then, since

PF = e× (distance from P to d)

and

PF ′ = e× (distance from P to d′),

it follows that

PF + PF ′ = e× ( distance between d and d′) .

= 2a

which is a constant. □

The result of Theorem 5 can be used to draw an ellipse,

using a piece of string fixed at both ends. A pencil is used to

pull the string taut; then, as we move the pencil round, the

25



shape that it traces out is an ellipse whose foci are the two

ends of the string.

Notice that, if we are given any three points F, F ′ and P

(not on the line segment F ′F ) in the plane, then there is only

one ellipse through P with F and F ′ as its foci. Its centre

is the midpoint, O, of the segment F ′F , its axes are the line

along F ′F and the line through O perpendicular to F ′F , and

its major axis has length PF + PF ′.

Also, if we are given any two points F and F ′ in the plane,

the locus of points P (not on the line segment F ′F ) in the plane

for which PF+PF ′ is a constant is necessarily an ellipse. Thus

the converse of Theorem 5 holds.

There is an analogous result for the hyperbola.

Theorem 2. (Difference of Focal Distances of Hy-

perbola) Let H be a hyperbola with major axis (−a, a)
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and foci F and F ′. Then, if P is a point on the branch of

the hyperbola that is closer to F ,

PF ′ − PF = 2a;

and, if P is a point on the branch of the hyperbola closer

to F ′,

PF ′ − PF = −2a.

In particular, |PF ′ − PF | is constant for all points P on

the hyperbola.

Proof: We shall prove only the first formula; the proof of

the second is similar. Let d and d′ be the directrices of the

hyperbola that correspond to the foci F and F ′ respectively,

and let P be a point on the branch of the hyperbola that is

closer to F . Then, since

PF = e× ( distance from P to d)

27



and

PF ′ = e× ( distance from P to d′)

it follows that

PF ′ − PF = e× ( distance between d and d′)

= 2a,

which is a constant. □

The result of Theorem 6 can be used to draw a hyperbola,

this time using piece of string and a stick. Choose two points F

and F ′ on the x -axis, equidistant from and on opposite sides of

the origin. Hinge one end of a movable stick F ′X at the focus

F ′; attach one end of a string of length ℓ (where ℓ is less than

the length of F ′X ) to the end X of the stick and the other end

of the string to F , and keep the string taut by holding a pencil

tight against the stick, as shown.

Then, as we move the pencil along the stick, the shape that

it traces out is part of one branch of a hyperbola with foci F
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and F ′. For,

PF ′ − PF = XF ′ − (XP + PF )

= XF ′ − ℓ

= a constant independent of P

We obtain the other branch of the hyperbola by interchanging

the roles of F and F ′ in the construction.

Notice that, if we are given any three points F, F ′ and P

(not on the line through F ′F or its perpendicular bisector) in

the plane, then there is only one hyperbola through P with F

and F ′ as its foci. Its centre is the midpoint, O, of the segment

F ′F , its axes are the line along F ′F and the line through O per-

pendicular to F ′F , and its major axis has length |PF ′ − PF |.

Also, if we are given any two points F and F ′ in the plane,

the locus of points P (not on the line segment F ′F ) in the plane

for which PF ′ − PF is a non-zero constant is necessarily one

branch of a hyperbola. Thus the converse of Theorem 6 holds,

in the following sense: Given any three points F, F ′ and P

(where P must lie strictly between F and F ′ if it lies on the line

through F ′F ) in the plane for which PF ′ −PF ̸= 0, the locus

of points Q in the plane for which QF ′ −QF = ± |PF ′ − PF |
is a hyperbola.

29



1.2 Properties of Conics

1.2.1 Tangents

In the previous section you met the parametric equations

of the parabola, ellipse and hyperbola in standard form.

We now tackle a rather natural question: given parametric

equations x = x(t), y = y(t) describing a curve, what is the

slope of the tangent to the curve at the point with parameter

t? This information will enable us to determine the equation of

the tangent to the curve at that point.

Theorem 1. The slope of the tangent to a curve in R2

with parametric equations x = x(t), y = y(t) at the point

with parameter t is
y′(t)

x′(t)

provided that x′(t) ̸= 0.

Proof: The points on the curve with parameters t and t + h
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have coordinates (x(t), y(t)) and (x(t+h), y(t+h)), respectively.

Then, if h ̸= 0, the slope of the chord joining these two points

is
y(t+ h)− y(t)

x(t+ h)− x(t)

which we can write in the form

(y(t+ h)− y(t))/h

(x(t+ h)− x(t))/h

We then take the limit of this ratio as h → 0. The slope of

the chord tends to the slope of the tangent, namely y′(t)/x′(t).

□

Example 1. (a) Determine the equation of the tangent at

the point with parameter t to the ellipse with parametric

equations

x = a cos t, y = b sin t,

where t ∈ (−π, π], t ̸= 0, π

(b) Hence determine the equation of the tangent to the ellipse

with parametric equations x = 3 cos t, y = sin t at the
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point with parameter t = π/4 Deduce the coordinates of

the point of intersection of this tangent with the x -axis.

Solution:

(a) Now, y′(t) = b cos t and x′(t) = −a sin t for t ∈ (−π, π];

it follows that, for t ̸= 0 or π, the slope of the tangent at

the point with parameter t is

y′(t)

x′(t)
=

b cos t

−a sin t

Hence the equation of the tangent at the point

(a cos t, b sin t), t ̸= 0 π, is

y − b sin t = −b cos t

a sin t
(x− a cos t)

Multiplying both sides and rearranging terms, we get

xb cos t+ ya sin t = ab cos2 t+ ab sin2 t = ab

and dividing both sides by ab gives the equation

x

a
cos t+

y

b
sin t = 1 (1)

The point on the ellipse where t = 0 is (a, 0), at which

the tangent has equation x = a. Similarly, the point on

the ellipse where t = π is (−a, 0), at which the tangent

has equation x = −a. It follows that equation (1) covers
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these cases also.

(b) Here the curve is the ellipse in part (a) in the particular

case that a = 3, b = 1. When t = π/4, it follows from

equation (1) that the equation of the tangent at the point

with parameter t = π/4 is

x

3
· 1√

2
+ y · 1√

2
= 1 ,

or
1

3
x+ y =

√
2

Hence, at the point T where the tangent crosses the x -axis,

y = 0 and so x = 3
√
2. Thus, T is the point (3

√
2, 0). □

Problem 1. Determine the slope of the tangent to the curve

in R2 with parametric equations

x = 2 cos t+ cos 2t+ 1, y = 2 sin t+ sin 2t

at the point with parameter t, where t is not a multiple of π.

Hence determine the equation of the tangent to this curve at

the points with parameters t = π/3 and t = π/2.
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Solution: We use the formula of Theorem 1 to find the slope

of the tangent to the curve at the point with parameter t, where

t is not a multiple of π. Since

x(t) = 2 cos t+ cos 2t+ 1 and

y(t) = 2 sin t+ sin 2t

we have
x′(t) = −2 sin t− 2 sin 2t and

y′(t) = 2 cos t+ 2 cos 2t

Hence the slope of the curve at this point is

y′(t)

x′(t)
=

2 cos t+ 2 cos 2t

−2 sin t− 2 sin 2t

= −cos t+ cos 2t

sin t+ sin 2t

In particular, at the point with parameter t = π/3, this slope

is

−cosπ/3 + cos 2π/3

sin π/3 + sin 2π/3
= −

1
2
− 1

2√
3/2 +

√
3/2

= 0
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Thus the tangent at this point is horizontal. Also,

y(π/3) = 2 sin(π/3) + sin(2π/3)

= 2 ·
√
3

2
+

√
3

2
=

3

2

√
3

It follows that the equation of the tangent at the point with pa-

rameter t = π/3 is y = 3
2

√
3. Next, at the point with parameter

t = π/2, the slope of the curve is

−cosπ/2 + cos π

sin π/2 + sin π
= −0− 1

1 + 0
= 1.

Also,

x(π/2) = 2 cos(π/2) + cos(π) + 1 = −1 + 1 = 0

and

y(π/2) = 2 sin(π/2) + sin(π) = 2 + 0 = 2

It follows that the equation of the tangent at the point with

parameter t = π/2 is

y − 2 = 1(x− 0), or y = x+ 2

□

Problem 2. (a) Determine the equation of the tangent at a

point P with parameter t on the rectangular hyperbola

with parametric equations x = t, y = 1/t
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(b) Hence determine the equations of the two tangents to the

rectangular hyperbola from the point (1,−1)

Solution:

(a) Here x′(t) = 1 and y′(t) = −1/t2; it follows that the slope

of the tangent at the point with parameter t is

y′(t)

x′(t)
=

−1/t2

1

= − 1

t2

It follows that the equation of the tangent at the point P

is

y − 1

t
= − 1

t2
(x− t)

or

y = − x

t2
+

2

t
.

(b) The line with equation y = − x
t2
+ 2

t
passes through the
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point (1,−1) if

−1 = − 1

t2
+

2

t

We can rewrite this equation in the form

t2 + 2t− 1 = 0

or

(t+ 1)2 = 2

it follows that the values of t at the two points on the

hyperbola for which the tangents pass through (1,−1)

are

t = −1±
√
2

When t = −1 +
√
2, the equation of the tangent is

y = − x

(
√
2− 1)2

+
2√
2− 1

= − x

3− 2
√
2
+

2√
2− 1

When t = −1−
√
2, the equation of the tangent is

y = − x

(−1−
√
2)2

+
2

−1−
√
2

= − x

3 + 2
√
2
− 2

1 +
√
2

□

We can modify the result of Example 1( a) to find the equa-
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tion of the tangent at the point (x1 , y1) on the ellipse with equa-

tion x2

a2
+ y2

b2
= 1. We take x = a cos t, y = b sin t as parametric

equations for the ellipse, and let x1 = a cos t1 and y1 = b sin t1 .

Then it follows from equation (1) above that the equation of

the tangent is
x

a
cos t1 +

y

b
sin t1 = 1

which we can rewrite in the form
xx1

a2
+

yy1
b2

= 1.

We can determine the equations of tangents to the hyper-

bola and the parabola in a similar way; the results are given in

the following theorem.

Theorem 2. The equation of the tangent at the point

(x1 , y1) to a conic in standard form is as follows.

Conic Tangent

Ellipse x2

a2
+ y2

b2
= 1

xx1

a2
+

yy1
b2

= 1

Hyperbola x2

a2
− y2

b2
= 1

xx1

a2
− yy1

b2
= 1

Parabola y2 = 4ax yy1 = 2a (x+ x1)

Problem 3. Prove that the equation of the tangent at

the point (x1 , y1) to the rectangular hyperbola xy = 1 is
1
2
(xy1 + x1y) = 1

Solution: The rectangular hyperbola xy = 1 has parametric

equations x = t, y = 1/t (where t ̸= 0 ). You found in Problem

2 (a) that the slope of the tangent at the point with parameter
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t is
y′(t)

x′(t)
= − 1

t2

Since − 1
t2
= − y1

x1
, the slope of the tangent at the point (x1 , y1)

may be written in a convenient form as − y1
x1
. (The slope may

be expressed in many other forms involving x1 and y1 , but this

particular form saves some algebra later in the calculation.)

Then the equation of the tangent to the hyperbola xy = 1

at the point (x1 , y1) is

y − y1 = −y1

x1

(x− x1)

Multiplying both sides by x1 , we may express this as

x1y − x1y1 = −xy1 + x1y1

so that
x1y + xy1 = 2x1y1

= 2

dividing this by 2 , we obtain the required equation. □

Problem 4. For each of the following conics, determine the

equation of the tangent to the conic at the indicated point.

(a) The unit circle x2 + y2 = 1 at
(
−1

2
, 1
2

√
3
)
.

(b) The hyperbola xy = 1 at
(
−4,−1

4

)
.

(c) The parabola y2 = x at (1,−1).
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Solution: The required equations may be obtained by simply

substituting numbers into the appropriate equation in Theorem

2 or Problem 3 .

(a) The equation of the tangent to the unit circle x2+y2 = 1

at
(
−1

2
, 1
2

√
3
)
is

x

(
−1

2

)
+ y

(
1

2

√
3

)
= 1,

which may be written in the form

√
3y = x+ 2 .

(b) The equation of the tangent to the rectangular hyperbola

xy = 1 at
(
−4,−1

4

)
is

1

2

(
x

(
−1

4

)
− 4y

)
= 1,

which may be written in the form x+ 16y = −8

(c) The equation of the tangent to the parabola y2 = x at

(1,−1) is

y(−1) =
1

2
(x+ 1)

which may be written in the form

x+ 2y = −1
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□

We can deduce a useful fact from the equation xx1+yy1 = 1

for the tangent at the point (x1 , y1) to the unit circle x
2+y2 = 1.

Let (a, b) be some point on this tangent, so that

ax1 + by1 = 1 (2)

Next, let the other tangent to the unit circle through the point

(a, b) touch the circle at the point (x2 , y2) ; it follows that

ax2 + by2 = 1 (3)

From equations (2) and (3) we deduce that the points (x1 , y1)

and (x2 , y2) both satisfy the equation ax + by = 1. Since this

is the equation of a line, it must be the equation of the line

through the points (x1 , y1) and (x2 , y2) . For historical reasons,

this line is called polar of (a, b) with respect to the unit circle.

Theorem 3. Let (a, b) be a point outside the unit circle,

and let the tangents to the circle from (a, b) touch the circle

at P1 and P2 . Then the equation of the line through P1 and

P2 is

ax+ by = 1

For example, the polar of (2, 0) with respect to the unit circle

is the line 2x = 1

Problem 5. Determine the equation of the polar of the point
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(2, 3) with respect to the unit circle.

Solution: Since 22 + 32 > 1, the point (2, 3) lies outside the

unit circle. Hence, by Theorem 3 , the polar of the point (2, 3)

with respect to the unit circle has the equation

2x+ 3y = 1

□

In the next example we meet the idea of the normal to a

curve.

Definition. The normal to a curve C at a point P on C

is the line through P that is perpendicular to the tangent

to C at P .

Example 2. (a) Determine the equation of the tangent at

the point with parameter t to the parabola with para-

metric equations

x = at2, y = 2at (t ∈ R)

(b) Hence determine the equations of the tangent and the

normal to the parabola with parametric equations x =

2t2, y = 4t at the point with parameter t = 3.
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Solution:

(a) Since y′(t) = 2a and x′(t) = 2at, it follows that, for t ̸= 0,

the slope of the tangent at this point is

y′(t)

x′(t)
=

2a

2at
=

1

t

Hence the equation of the tangent at the point

(at2, 2at) , t ̸= 0, is

y − 2at =
1

t

(
x− at2

)
which can be rearranged in the form

ty = x+ at2 (4)

The point on the parabola at which t = 0 is (0, 0); there

the tangent to the parabola is the y -axis, with equation

x = 0. It follows that equation (4) covers this case also.
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(b) Here the curve is the parabola in part (a) in the particular

case that a = 2. When t = 3, it follows from equation

(4) that the equation of the tangent is 3y = x+ 2 · 32, or
3y = x+ 18.

To find the equation of the normal, we must find its slope

and the coordinates of the point on the parabola at which

t = 3.

When t = 3, it follows from the equation of the tangent

that the slope of the tangent is 1
3
. Since the tangent and

normal are perpendicular to each other, it follows that

the slope of the normal must be −3. Also, when t = 3,

we have that x = 2 · 32 = 18 and y = 4 · 3 = 12; so

the corresponding point on the parabola has coordinates

(18, 12).

It follows that the equation of the normal to the parabola

at the point (18, 12) is

y − 12 = −3(x− 18)

= −3x+ 54

or

y = −3x+ 66

□

Problem 6. The normal to the parabola with parametric equa-

tions x = t2, y = 2t(t ∈ R) at the point P with parameter
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t, t ̸= 0, meets the parabola at a second point Q with parame-

ter T.

(a) Prove that the slope of the normal to the parabola at P

is −t.

(b) Find the equation of the normal to the parabola at P

(c) By substituting the coordinates of Q into your equation

from part (b), prove that T = −2
l
− t.

Solution:

(a) We saw in Example 2 (a) that the slope of the tangent

at the point P with parameter t (where t ̸= 0 ) is 1/t.

Since the normal and the tangent at P are perpendicular

to each other, it follows that the slope m of the normal

at P must satisfy the equation m · (1/t) = −1. Hence

m = −t.
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(b) The normal at P is thus the line through the point (t2, 2t)

with slope −t, and so has equation

y − 2t = −t
(
x− t2

)
,

or

y = −tx+ 2t+ t3 (∗)

(c) Let Q be the point on the parabola with parameter T ,

say; thus its coordinates are (T 2, 2T ). Since Q lies on the

line with equation (∗), it follows that

2T = −tT 2 + 2t+ t3

we can rearrange this equation in the form

2(T − t) = −t
(
T 2 − t2

)
Since T ̸= t, we may divide through by T − t, to get

2 = −t(T + t)

= −tT − t2

so that tT = −2− t2; it follows that T = −2
t
− t

□

Problem 7. This question concerns the parabola with para-

metric equations x = at2, y = 2at(t ∈ R)
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(a) Determine the equation of the chord joining the points

P1 and P2 on the parabola with parameters t1 and t2 ,

respectively, where t1 and t2 are unequal and non-zero.

Now assume that the chord P1P2 passes through the focus (a, 0)

of the parabola.

(b) Prove that t1t2 = −1.

(c) Use the result of Example 2 (a) to write down the equa-

tions of the tangents to the parabola at P1 and P2 , and

to prove that these tangents are perpendicular.

(d) Find the point of intersection P of the two tangents in

part (c), and verify that it lies on the directrix x = −a

of the parabola.

(e) Find the equation of the normal at the point Q (at2, 2at)

to the parabola. Hence prove that if the normal at Q

passes through the focus F (a, 0), then Q is the vertex of

the parabola.
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Solution:

(a) P1 has coordinates
(
at2

1
, 2at1

)
and P2 has coordinates(

at2
2
, 2at2

)
. So, if t2

1
̸= t2

2
the slope of the chord P1P2

is

2at2 − 2at1
at2

2
− at2

1

= 2
t2 − t1
t2
2
− t2

1

=
2

t2 + t1

It follows that the equation of P1P2 is

y − 2at1 =
2

t1 + t2

(
x− at2

1

)
or

(t1 + t2) (y − 2at1) = 2
(
x− at2

1

)
. (∗∗)

If, however, t2
1
= t2

2
we must have t1 = −t2 since P1 and

P2 are distinct. The chord P1P2 is then parallel to the y

-axis, so that we can write its equation as x = at2
1
. Thus

the equation of the chord is given by equation (∗∗) in this

case too.

(b) If the chord P1P2 passes through the focus (a, 0), the

coordinates of (a, 0) must satisfy equation (2); hence

(t1 + t2) (−2at1) = 2
(
a− at2

1

)
,
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so that

−t2
1
− t1t2 = 1− t2

1

It follows that t1t2 = −1.

(c) It follows from Example 2(a) that the equations of the

tangents at P1 and P2 are

t1y = x+ at2
1

and

t2y = x+ at2
2

respectively.

Now it follows also from part (a) of Example 2 that the

slopes of the tangents at P1 and P2 are 1/t1 and 1/t2 ,

respectively. These tangents are perpendicular if(
1

t1

)
·
(
1

t2

)
= −1

and we can rewrite this condition in the form t1t2 = −1.

We have already seen in part (b) that t1t2 = −1, and

so we deduce that the tangents at P1 and P2 are indeed

perpendicular.

(d) The equations of the tangents at P1 and P2 are

t1y = x+ at2
1

and t2y = x+ at2
2
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respectively. By subtracting these, we see that at the

point (x, y) of intersection,

(t1 − t2) y = a
(
t2
1
− t2

2

)
so that

y = a (t1 + t2) .

It then follows from the equation t1y = x+ at2
1
that

t1a (t1 + t2) = x+ at2
1

so that

x = at1t2

= −a (since t1t2 = −1)

The point of intersection is therefore (−a, a (t1 + t2)).

Since the first coordinate of the point of intersection is

−a, it follows that the point of intersection lies on the

directrix of the parabola.

(e) Since (by the result of Example 2 (a)) the tangent at Q

has slope 1/t, when t ̸= 0, it follows that in this case the

normal at Q has slope −t. When t = 0, the point Q is

the origin, the vertex of the parabola; so in this case too

the slope of the normal is −t.
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Hence in general the equation of the normal at Q is

y − 2at = −t
(
x− at2

)
(∗ ∗ ∗)

If this normal passes through F (a, 0), then the coordi-

nates of F must satisfy equation (∗ ∗ ∗); that is,

−2at = −t
(
a− at2

)
We can divide through by a and then rearrange the terms

in this equation to get

0 = t
(
1 + t2

)
It follows that t = 0, and so Q must be the vertex of the

parabola.

□

1.2.2 Reflections

We use the reflection properties of mirrors all the time. For

example, we look in plane mirrors while shaving or combing

our hair, and we use electric fires with reflecting rear surfaces

to throw radiant heat out into a room.

All reflecting surfaces - mirrors, for example - obey the same

Reflection Law. The Reflection Law is often expressed in terms
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of the angles made with the normal to the surface rather than

the surface itself. However in this section we shall state and

use it in the following form.

The Reflection Law The angle that incoming light makes

with the tangent to a surface is the same as the angle that

the reflected light makes with the tangent.

This law applies to all mirrors, no matter whether the re-

flecting surface is plane or curved. Indeed, in many practical

applications the mirror is designed to have a cross-section that

is a conic curve - for example, the Lovell radiotelescope at Jo-

drell Bank in Cheshire, England uses a parabolic reflector to

focus parallel radio waves from space onto a receiver.

We now investigate the reflection properties of mirrors in

the shape of the non-degenerate conics.

Reflection Property of the Ellipse

We start with the following interesting property of the el-

lipse.
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Reflection Property of the Ellipse Light which comes

from one focus of an elliptical mirror is reflected at the

ellipse to pass through the second focus.

In our proof we use the following trigonometric result for

triangles.

Sine Formula In a triangle △ABC with sides a, b, c op-

posite the vertices A,B,C, respectively,

a

sin∠BAC
=

b

sin∠ABC
=

c

sin∠ACB

Proof of Reflection Property Let E be the ellipse in stan-

dard form, and P (a cos t, b sin t) an arbitrary point on E; for

simplicity, we shall assume that P lies in the first quadrant.
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Then, as we saw earlier,

PF = e× (distance from P to corresponding directrix d)

= e×
(a
e
− a cos t

)
= a− ae cos t

and
PF ′ = e× ( distance from P to d′)

= e×
(a
e
+ a cos t

)
= a+ ae cos t

Hence,
PF

PF ′ =
a− ae cos t

a+ ae cos t
=

1− e cos t

1 + e cos t
.

Next, we saw earlier that the equation of the tangent at P
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to the ellipse is
x

a
cos t+

y

b
sin t = 1

hence at the point T where the tangent at P intersects the x

-axis, we have

x

a
cos t = 1, or x = a/ cos t

It follows that

TF

TF ′ =
(a/ cos t)− ae

(a/ cos t) + ae
=

1− e cos t

1 + e cos t
.

We deduce that

PF

PF ′ =
TF

TF ′ , or
PF

TF
=

PF ′

TF ′ .

By applying the Sine Formula to the triangles △PFT and

△PF ′T , we obtain that

PF

TF
=

sin∠PTF

sin∠TPF
and

PF ′

TF ′ =
sin∠PTF ′

sin∠TPF

so that
sin∠PTF

sin∠TPF
=

sin∠PTF ′

sin∠TPF ′

Since ∠PTF = ∠PTF ′ it follows that sin∠TPF = sin∠TPF ′,

so that ∠TPF = π − ∠TPF ′ since ∠TPF ̸= ∠TPF ′. Hence

∠TPF equals the angle denoted by the symbol α in the dia-

gram, and this is equal to the angle β (as α and β are vertically

opposite).
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This completes the proof of the Reflection Property. □

An amusing illustration of the property is as follows. A

poor snooker player could appear to be a ’crack shot’ if he used

a snooker table in the shape of an ellipse: for if he places his

snooker ball on the table at one focus and a target ball at the

other focus, then no matter what direction he hits his ball, he

is certain to reach his target!

Reflection Property of the Hyperbola

The hyperbola has a reflection property similar to that of

the ellipse, with an appropriate modification.

Reflection Property of the Hyperbola Light coming

from one focus of a hyperbolic mirror is reflected at the

hyperbola in such a way that the light appears to have

come from the other focus.
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Also, light going towards one focus of a hyperbolic mir-

ror is reflected at the mirror towards the other focus.

We omit a proof of this result, as it is similar to the proof

of the Reflection Property of the ellipse.

Reflection Property of the Parabola

The Reflection Property of the parabola is also similar to

the reflection property of the ellipse.

Reflection Property of the Parabola Incoming light

parallel to the axis of a parabolic mirror is reflected at

the parabola to pass through the focus. Conversely, light

coming from the focus of a parabolic mirror is reflected at

the parabola to give a beam of light parallel to the axis of

the parabola.

Proof: Let E be the parabola in standard form, and let

P (at2, 2at) be an arbitrary point on E.

57



We have seen that the equation of the tangent at P to the

parabola has equation ty = x + at2. If T is the point where

this tangent meets the x -axis, then at T we have y = 0 and

t · 0 = x+ at2, so that x = −at2.

In the triangle △PTF we have

TF = TO +OF = at2 + a

and, by the Distance Formula,

FP =

√
(a− at2)2 + (2at)2 =

√
a2 + 2a2t2 + a2t4

= a+ at2.

Then, since TF = FP , the triangle △PTF is isosceles, and so

∠TPF = ∠FTP . Now since the horizontal line through P is

parallel to the x -axis, the angle between the tangent at P and

the horizontal line through P is equal to ∠FTP (as they are

corresponding angles), and so also to ∠TPF . This completes

the proof of the reflection property. □
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The reflection property of the parabola is also the principle

behind the design of searchlights as well as radio-telescopes.

The reflector of a searchlight is a parabolic mirror, with the

bulb at its focus. Light from the bulb hits the mirror and is

reflected outwards as a parallel beam.

The design of optical telescopes sometimes uses the Reflec-

tion Properties of other conics too. For example, the 4.2 me-

tre William Herschel telescope at the Roque de los Muchachos

Observatory on the island of La Palma in the Canary Islands,

has an arrangement of mirrors known as a Cassegrain focus:

a primary parabolic mirror reflects light towards a secondary

hyperbolic mirror, which reflects it again to a focus behind the

primary mirror.
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The secondary mirror is used to focus the light to a much

more convenient place than the focus of the primary mirror,

and to increase the effective focal length of the telescope (and

so its resolution).

We can summarize the above three Reflection Properties

concisely as follows. All mirrors in the shape of a non-

degenerate conic reflect light coming from or going to one focus

towards the other focus.

Problem 8. Let E and H be an ellipse and a hyperbola, both

having the same points F and F ′ as their foci. Use the reflection

properties of the ellipse and hyperbola to prove that at each

point of intersection, E and H meet at right angles.

Solution: Let α1 , α2 , α3 , α4 , β1 , β2 , β3 , β4 be the angles indi-

cated in the above diagram.

Then

α1 = α2 (vertically opposite angles)

= α3 (by the Reflection Property for the ellipse)

= α4 (vertically opposite angles),

and

β1 = β2 (vertically opposite angles)

= β3 (by the Reflection Property for the hyperbola)

= β4 (vertically opposite angles).
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Since α1 +α2 +α3 +α4 +β1 +β2 +β3 +β4 = 2π, it follows that

α
i
+ β

j
=

1

2
π for any i and any j

In particular, α3 + β3 =
1
2
π, so that the tangents to E and

H are perpendicular. In other words, E and H intersect at

right angles. □

1.2.3 Conics as envelopes of tangent families

We now show how we can construct the non-degenerate

conics as the envelope of a family of lines that are tangents to

the conics. In other words, the conic being constructed is the

curve in the plane that has each of the lines in the family as a

tangent.

The method depends on the use of a circle associated with

each nondegenerate conic, called its auxiliary circle. The auxil-

iary circle of an ellipse or hyperbola is the circle whose diameter

is its major axis; analogously we shall define the tangent to a

parabola at its vertex to be the auxiliary circle of the parabola.
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The mathematical tool that we use in our construction is the

following result.

Theorem 4. A perpendicular from a focus of a non-

degenerate conic to a tangent meets the tangent on the

auxiliary circle of the conic.

Proof: (for a parabola) Let the point P (at2, 2at) lie on the

parabola in standard form with equation y2 = 4ax, and let the

perpendicular from the focus F (a, 0) to the tangent at P meet

it at T . By Theorem 2 of Subsection 1.2.1, the tangent at P
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has equation

y · 2at = 2a
(
x+ at2

)
which we may rewrite in the form

y =
1

t
x+ at (5)

From this we see that the slope of the tangent PT is 1/t, so

that the slope of the perpendicular FT must be −t. Since FT

also passes through F (a, 0), FT must have equation

y + tx = 0 + t · a

which we may rewrite in the form

y = −tx+ at (6)

The equations (5) for PT and (6) for FT clearly have the so-

lution x = 0, y = at. This means that the point of intersection

T of the lines PT and FT has coordinates (0, at). Hence T lies

on the directrix of the parabola, as required. □

Remark

Given a parabola and its axis, we can use Theorem 4 to

identify the focus of the parabola. We draw the tangent at any

point P on the parabola, and then the perpendicular to the

tangent at the point T where the tangent meets the directrix.
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This perpendicular crosses the parabola’s axis at its focus.

Problem 9. Prove Theorem 4 for an ellipse.

Solution: Let the point P (a cos t, b sin t) lie on the ellipse in

standard form with equation x2

a2
+ y2

b2
= 1, a ≥ b > 0, and let

the perpendicular from the focus F (ae, 0) to the tangent at P

meet that tangent at T .

By Theorem 2 of Subsection 1.2.1, the tangent at P has

equation
x · a cos t

a2
+

y · b sin t
b2

= 1

which we may rewrite in the form

bx cos t+ ay sin t = ab (∗)

From this we see that, if t /∈ {−π/2, 0, π/2, π} the slope of

the tangent PT is −(b/a) cot t, so that the slope of the perpen-

dicular FT must be (a/b) tan t. Since FT also passes through

F (ae, 0), FT has equation

y − a

b
tan t · x = −a

b
tan t · ae

= −a2e

b
tan t

which we may rewrite in the form

ax sin t− by cos t = a2e sin t. (∗∗)

64



Then the coordinates of the point T (x, y) of intersection of PT

and FT must satisfy both equations (∗) and (∗∗). So, squaring

each of (∗) and (∗∗) and adding, we find that the coordinates

of T must satisfy the equation

(x2 + y2)
(
b2 cos2 t+ a2 sin2 t

)
= a2

(
b2 + a2e2 sin2 t

)
.

We then rewrite this equation in the form

x2 + y2 = a2
b2 + a2e2 sin2 t

b2 cos2 t+ a2 sin2 t

= a2
(a2 − a2e2) + a2e2 sin2 t

(a2 − a2e2)
(
1− sin2 t

)
+ a2 sin2 t

= a2
1− e2 + e2 sin2 t

1− sin2 t− e2 + e2 sin2 t+ sin2 t

= a2.

It follows that the point T must lie on the auxiliary circle x2 +

y2 = a2, as required.

If t = 0 or π, the tangent to the ellipse at P is a verti-

cal line perpendicular to FP ; so the tangent at P meets the

perpendicular to it from F at P− which lies on the auxiliary

circle.

Finally, if t = ±π/2, the tangent to the ellipse at P is a

horizontal line with equation y = ±b. The point T where PT

is perpendicular to FT must thus satisfy the equations x = ae
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and y = ±b; this lies on the auxiliary circle, since

x2 + y2 = a2e2 + (±b)2

= a2e2 + a2
(
1− e2

)
= a2

□

To construct the envelopes of the conics, you will need a

sheet of paper, a pair of compasses, a set square and a pin.

Parabola

Draw a line d for the directrix of the parabola and a point

F (not on d ) for its focus. Place a set square so that its right-

angled vertex lies at a point of d and one of its adjacent sides

passes through F ; draw the line ℓ along the other adjacent side

of the set square. By Theorem 4, ℓ is a tangent to the parabola

with focus F and directrix d.

Repeating the process with the vertex of the set square at

different points of d gives a family of lines ℓ that is the envelope

of tangents to the parabola, as shown below.
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Ellipse

Draw a circle C for the auxiliary circle of the ellipse and a

point F inside C (but not at its centre) for a focus. Place a set

square so that its right-angled vertex lies at a point of C and

one of its adjacent sides passes through F ; draw Properties of

Conics the line ℓ along the other adjacent side of the set square.

By Theorem 4, ℓ is a tangent to the ellipse with focus F and

auxiliary circle C.

Repeating the process with the vertex of the set square at

different points of C gives a family of lines that is the envelope

of tangents to the ellipse, as shown below.
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Hyperbola

Draw a circle C for the auxiliary circle of the hyperbola

and a point F outside C for a focus. Place a set square so

that its right-angled vertex lies at a point of C and one of its

adjacent sides passes through F ; draw the line ℓ along the other

adjacent side of the set square. By Theorem 4, ℓ is a tangent

to the hyperbola with focus F and auxiliary circle C.

Repeating the process with the vertex of the set square at

different points of C gives a family of lines that is the envelope

of tangents to one branch of the hyperbola, as shown below.

Repeating the construction with the other focus F ′ (diamet-

rically opposite F with respect to C ) gives the other branch

of the hyperbola.
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1.3 Recognizing Conics

So far, we have considered the equation of a conic largely

when it is in ’standard form’; that is, when the centre of the

conic (if it has a centre) is at the origin, and the axes of the

conic are parallel to the x -and y -axes. However, most of the

conics which arise in calculations are not in standard form; thus

we need some way of determining from the equation of a conic

which type of conic it describes.

First we observe that all the equations of all (non-

degenerate) conics in standard form can be expressed in the

form

Ax2 +Bxy + Cy2 + Fx+Gy +H = 0 (1)

where not all of A,B and C are zero. For example, the equation

of the circle

x2 + y2 + 4x+ 6y − 23 = 0 (2)
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is of the form (1), with A = C = 1, B = 0, F = 4, G = 6 and

H = −23.

Now we can obtain any non-degenerate conic from a conic

in standard form by a suitable rotation

(x, y) 7→ (x cos θ − y sin θ, x sin θ + y cos θ)

followed by a suitable translation

(x, y) 7→ (x− a, y − b)

Both of these transformations are linear, so that the equation of

the conic at each stage is a second degree equation of the type

(1); in other words, any non-degenerate conic has an equation

of type (1).

The equations of degenerate conics can also be expressed in

the form (1). For example,

x2 + y2 = 0 represents the single point (0, 0);

y2 − 2xy + x2 = 0 represents the single line y = x, since

y2 − 2xy + x2 = (y − x)2;

y2 − x2 = 0 represents the pair of lines y = ±x, since

y2 − x2 = (y + x)(y − x)

However, an equation of the form (1) can also describe the

empty set; an example of this is the equation x2 + y2 + 1 = 0,

as there are no points (x, y) in R2 for which x2 + y2 = −1. For
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simplicity in the statement of the theorem below, therefore, we

add the empty set to our existing list of degenerate conics.

In the above discussion, we proved one part of the following

result.

Theorem 1. Any conic has an equation of the form

Ax2 +Bxy + Cy2 + Fx+Gy +H = 0 (3)

where A,B,C, F,G and H are real numbers, and not all of

A,B and C are zero. Conversely, any set of points in R2

whose coordinates (x, y) satisfy equation (3) is a conic.

In this section we investigate the classification of conics in

terms of equation (3). In particular, if we are given the equa-

tion of a non-degenerate conic in the form (3) how can we

determine whether it is a parabola, an ellipse or a hyperbola?

And how can we identify its vertex or centre? And its axis, or

its major and minor axes? A key tool in this work is the matrix

representation of the equation of a conic.

Introducing Matrices

We can express a general second degree equation in x and

y

Ax2 +Bxy + Cy2 + Fx+Gy +H = 0 (4)
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where A,B and C are not all zero, in terms of matrices as

follows.

Let A =

(
A 1

2
B

1
2
B C

)
,J =

(
F

G

)
and x =

(
x

y

)
. Then

xTAx =
(

x y
)( A 1

2
B

1
2
B C

)(
x

y

)

=

(
Ax+

1

2
By

1

2
Bx+ Cy

)(
x

y

)
= Ax2 +Bxy + Cy2

and

JTx =
(

F G
)( x

y

)
= Fx+Gy

We may therefore write the equation (4) in the form

xTAx+ JTx+H = 0 (5)

For example, let E be the conic with equation

3x2 − 10xy + 3y2 + 14x− 2y + 3 = 0

The equation of E is of the form (4) with A = 3, B = −10, C =

3, F = 14, G = −2 and H = 3. It follows from the above

discussion that we can express the equation of E in matrix
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form as xTAx+ JTx+H = 0, where

A =

(
3 −5

−5 3

)
, J =

(
14

−2

)
, H = 3 and x =

(
x

y

)
.

Problem 1. Write the equation of each of the following conics

in matrix form.

(a) 11x2 + 4xy + 14y2 − 4x− 28y − 16 = 0

(b) x2 − 4xy + 4y2 − 6x− 8y + 5 = 0

Solution:

(a) The equation of the conic

11x2 + 4xy + 14y2 − 4x− 28y − 16 = 0

can be written in matrix form xTAx + JTx+ H = 0,

where

A =

(
11 2

2 14

)
, J =

(
−4

−28

)
,

H = −16 and x =

(
x

y

)
.

(b) The equation of the conic

x2 − 4xy + 4y2 − 6x− 8y + 5 = 0
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can be written in matrix form xTAx+JTx+H = 0 where

A =

(
1 −2

−2 4

)
, J =

(
−6

−8

)
,

H = 5 and x =

(
x

y

)
.

□

A key tool in our use of matrices will be the following re-

sult.

Theorem 2. A 2× 2 matrix P represents a rotation of R2

about the origin if and only if it satisfies the following two

conditions:

(a) P is orthogonal;

(b) detP = 1.

Proof: A matrix P represents a rotation about the origin (an-

ticlockwise through an angle θ ) if and only it is of the form(
cos θ − sin θ

sin θ cos θ

)
(6)

It is easy to verify that P satisfies conditions (a) and (b).

Next, let P =

(
a b

c d

)
be a matrix that satisfies condi-

tions (a) and (b).
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Then, since P is orthogonal, the vector

(
a

c

)
has length

1 ; that is, a2 + c2 = 1. Thus there is a number θ for which

a = cos θ and c = sin θ.

Also, since P is orthogonal, the vectors

(
a

c

)
=

(
cos θ

sin θ

)

and

(
b

d

)
are orthogonal; that is, (cos θ sin θ)

(
b

d

)
= 0

or

cos θ · b+ sin θ · d = 0

So there exists some number λ, say, such that

b = −λ sin θ and d = λ cos θ

Then since det P = 1, we have

1 = ad− bc = λ cos2 θ + λ sin2 θ

so that λ = 1. It follows that P must be of the form (6), and

so represent a rotation of R2 about the origin. □

Using Matrices

We now use the methods of Linear Algebra to recognize

conics specified by their equations.
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Example 1. Prove that the conic E with equation

3x2 − 10xy + 3y2 + 14x− 2y + 3 = 0

is a hyperbola. Determine its centre, and its major and minor

axes.

Solution: We saw above that the equation of E can be written

in matrix form as xTAx+ JTx+H = 0, where

A =

(
3 −5

−5 3

)
, J =

(
14

−2

)
, H = 3 and x =

(
x

y

)
;

that is, as

(
x y

)( 3 −5

−5 3

)(
x

y

)
+
(

14 −2
)( x

y

)
+ 3 = 0.

We start by diagonalizing the matrixA. Its characteristic equa-

tion is

0 = det(A− λI) =

∣∣∣∣∣ 3− λ −5

−5 3− λ

∣∣∣∣∣
= λ2 − 6λ− 16

= (λ− 8)(λ+ 2),

so that the eigenvalues of A are λ = 8 and λ = −2. The

eigenvector equations of A are

(3− λ)x− 5y = 0

−5x+ (3− λ)y = 0
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When λ = 8, these equations both become

−5x− 5y = 0

so that we may take as a corresponding eigenvector

(
1

−1

)
,

which we normalize to have unit length as

(
1/
√
2

−1/
√
2

)
.

When λ = −2, the eigenvector equations of A become

5x− 5y = 0

−5x+ 5y = 0

so that we may take as a corresponding eigenvector

(
1

1

)
,

which we normalize to have unit length as

(
1/
√
2

1/
√
2

)
.

Now ∣∣∣∣∣ 1/
√
2 1/

√
2

−1/
√
2 1/

√
2

∣∣∣∣∣ = 1

2
+

1

2
= 1,

so we take as our rotation of the plane the transformation x =

Px′ where P =

(
1/
√
2 1/

√
2

−1/
√
2 1/

√
2

)
. The transformation x =

Px changes the equation of the conic to the form

(Px′)
T
A (Px′) + JT (Px′) +H = 0
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or

(x′)
T (

PTAP
)
x′ +

(
JTP

)
x′ +H = 0.

Since PTAP =

[
8 0

0 −2

]
, the equation of the conic is now

(x′ y′)

(
8 0

0 −2

)(
x′

y′

)

+ (14 − 2)

(
1/
√
2 1/

√
2

−1/
√
2 1/

√
2

)(
x′

y′

)
+ 3 = 0,

which we can rewrite in the form

8x′2 − 2y2 + 8
√
2x′ + 6

√
2y′ + 3 = 0

We may rewrite this equation in the form

8
(
x2 +

√
2x′
)
− 2

(
y′2 − 3

√
2y′
)
+ 3 = 0
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so that, on completing the square, we have

8
(
x′ + 1/

√
2
)2

− 4− 2
(
y′ − 3/

√
2
)2

+ 9 + 3 = 0

which we can rewrite in the form

8
(
x′ + 1/

√
2
)2

− 2
(
y′ − 3/

√
2
)2

= −8

or (
y′ − 3/

√
2
)2

4
−
(
x′ + 1/

√
2
)2

1
= 1 (7)

This is the equation of a hyperbola.

From equation (7) it follows that the centre of the hyper-

bola E is the point where x′ = −1/
√
2 and y′ = 3/

√
2. From

the equation x = Px′, it follows that in terms of the original

coordinate system this is the point(
x

y

)
=

(
1/
√
2 1/

√
2

−1/
√
2 1/

√
2

)(
−1/

√
2

3/
√
2

)

=

(
1

2

)
,

that is, the point (1, 2).

It also follows from equation (7) that the major axis of E

has equation x′ + 1/
√
2 = 0, or x′ = −1/

√
2; and the minor

axis of E has equation y′ − 3/
√
2 = 0, or y′ = 3/

√
2.

Finally, since the matrix P is orthogonal we can rewrite the
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equation x = Px′ in the form x′ = P−1x = PTx, so that(
x′

y′

)
=

(
1√
2

−1√
2

1√
2

1√
2

)(
x

y

)

or as a pair of equations

x′ =
1√
2
x− 1√

2
y

y′ =
1√
2
x+

1√
2
y

It follows that the equation, x′ = −1/
√
2, of the major axis

of the hyperbola E can be expressed in terms of the original

coordinate system as

1√
2
x− 1√

2
y = − 1√

2
, or x− y = −1

Similarly, the equation, y′ = 3/
√
2, of the minor axis of the

hyperbola can be expressed in terms of the original coordinate

system as

1√
2
x+

1√
2
y =

3√
2
, or x+ y = 3.

□

The above problem illustrates a general strategy for identi-

fying conics from their second degree equations.
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Strategy. To classify a conic E with equation

Ax2 +Bxy + Cy2 + Fx+Gy +H = 0 :

1. Write the equation of E in matrix form xTAx+JTx+

H = 0.

2. Determine an orthogonal matrix P, with determinant

1 , that diagonalizes A.

3. Make the change of coordinate system x = Px′. The

equation of E then becomes of the form

λ1x
′2 + λ2y

′2 + fx′ + gy′ + h = 0

where λ1 and λ2 are the eigenvalues of A.

4. ’Complete the squares’, if necessary, to rewrite the

equation of E in terms of an (x′′, y′′) -coordinate sys-

tem as the equation of a conic in standard form.

5. Use the equation x′ = PTx to determine the cen-

tre and axes of E in terms of the original coordinate

system.

Problem 2. Classify the conics in R2 with the following equa-

tions. Determine the centre of those that have a centre.

(a) 11x2 + 4xy + 14y2 − 4x− 28y − 16 = 0
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(b) x2 − 4xy + 4y2 − 6x− 8y + 5 = 0

Solution:

(a) We saw in Problem 1 (a) that the matrix form of the

equation of this conic is xTAx+ JTx+ H = 0, where

A =

(
11 2

2 14

)
, J =

(
−4

−28

)
,

H = −16 and x =

(
x

y

)
;

that is

(xy)

(
11 2

2 14

)(
x

y

)
+ (−4− 28)

(
x

y

)
− 16 = 0

First we diagonalize A. Its characteristic equation is

0 = det(A− λI) =

∣∣∣∣∣ 11− λ 2

2 14− λ

∣∣∣∣∣
= λ2 − 25λ+ 150

= (λ− 15)(λ− 10),

so that the eigenvalues of A are λ = 15 and λ = 10. The

eigenvector equations of A are

(11− λ)x+ 2y = 0

2x+ (14− λ)y = 0
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When λ = 15, these equations become

−4x+ 2y = 0

2x− y = 0

so that we may take as a corresponding eigenvector(
1

2

)
, which we normalize to have unit length as(

1/
√
5

2/
√
5

)
.

When λ = 10, the eigenvector equations of A become

x+ 2y = 0

2x+ 4y = 0

so that we may take as a corresponding eigenvector(
2

−1

)
which we normalize to have unit length as(

2/
√
5

−1/
√
5

)
.

Now

∣∣∣∣∣ 1/
√
5 2/

√
5

2/
√
5 −1/

√
5

∣∣∣∣∣ = −1
5
− 4

5
= −1, so interchanging

the order of the eigenvectors as columns of P− in order

that det P = +1, so that then P represents a rotation

rather than a rotation composed with a reflection − we

take as our rotation of the plane the transformation x =

Px′, where P =

(
2/
√
5 1/

√
5

−1/
√
5 2/

√
5

)
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This transformation changes the equation of the conic to

the form

(Px′)
T
A (Px′) + JT (Px′) +H = 0

or

(x′)
T (

PTAP
)
x′ +

(
JTP

)
x′ +H = 0

Since PTAP =

(
10 0

0 15

)
, this is the equation

(x′ y′)

(
10 0

0 15

)(
x′

y′

)
+ (−4− 28)

(
2√
5

1√
5

− 1√
5

2√
5

)
·(

x′

y′

)
− 16 = 0.

We may rewrite this equation in the form

10x2 + 15y′2 + 4
√
5x′ − 12

√
5y′ − 16 = 0

or

10

(
x2 +

2√
5
x′
)
+ 15

(
y′2 − 4√

5
y′
)
− 16 = 0;

so that, on completing the square, we have

10

(
x′ +

1√
5

)2

− 2 + 15

(
y′ − 2√

5

)2

− 12− 16 = 0

or

10

(
x′ +

1√
5

)2

+ 15

(
y′ − 2√

5

)2

− 30 = 0
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or (
x′ + 1√

5

)2
3

+

(
y′ − 2√

5

)2
2

= 1 (∗)

This is the equation of an ellipse.

From equation (∗) it follows that the centre of the ellipse
is the point where x′+ 1√

5
= 0 and y′ − 2√

5
= 0, that

is, where x′ = − 1√
5
and y′ = 2√

5
. From the equa- tion

x = Px′, it follows that in terms of the original coordinate

system this is the point(
x

y

)
=

(
2√
5

1√
5

− 1√
5

2√
5

)(
− 1√

5
2√
5

)

=

(
0

1

)

that is, the point (0, 1).

Since 3 > 2, it also follows from equation (2) that the

major axis of the ellipse has equation y′ − 2√
5
= 0, or

y′ = 2√
5
; and the minor axis has equation x′ + 1√

5
= 0,

or x′ = − 1√
5
. Finally, since the matrix P is orthogonal

we can rewrite the equation x = Px′ in the form x′ =

P−1x = PTx, so that(
x′

y′

)
=

(
2√
5

− 1√
5

1√
5

2√
5

)(
x

y

)
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or as a pair of equations

x′ =
2√
5
x− 1√

5
y

y′ =
1√
5
x+

2√
5
y

It follows that the equation, y′ = 2√
5
, of the major axis

of the ellipse can be expressed in terms of the original

coordinate system as

1√
5
x+

2√
5
y =

2√
5

or x+ 2y = 2

Similarly, the equation, x′ = − 1√
5
, of the minor axis of the

ellipse can be expressed in terms of the original coordinate

system as 2√
5
x− 1√

5
y = − 1√

5
or 2x− y = −1

(b) We saw in Problem 1( b) that the matrix form of the

equation of this conic is xTAx+ JTx+H = 0, where

A =

(
1 −2

−2 4

)
, J =

(
−6

−8

)
, H = 5 and x =

(
x

y

)

that is

(
x y

)( 1 −2

−2 4

)(
x

y

)
+(−6− 8)

(
x

y

)
+5 = 0
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First we diagonalize A. Its characteristic equation is

0 = det(A− λI) =

∣∣∣∣∣ 1− λ −2

−2 4− λ

∣∣∣∣∣
= λ2 − 5λ

= λ(λ− 5),

so that the eigenvalues of A are λ = 0 and λ = 5. The

eigenvector equations of A are

(1− λ)x− 2y = 0

−2x+ (4− λ)y = 0

When λ = 0, these equations become

x− 2y = 0

−2x+ 4y = 0

so that we may take as a corresponding eigenvector(
2

1

)
, which we normalize to have unit length as(

2/
√
5

1/
√
5

)
.

When λ = 5, the eigenvector equations of A become

−4x− 2y = 0

−2x− y = 0
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so that we may take as a corresponding eigenvector(
1

−2

)
, which we normalize to have unit length as(

1/
√
5

−2/
√
5

)
.

Now

∣∣∣∣∣ 2/
√
5 1/

√
5

1/
√
5 −2/

√
5

∣∣∣∣∣ = −4
5
− 1

5
= −1 so interchanging

the order of the eigenvectors as columns of P− in order

that det P = +1, so that then P represents a rotation

rather than a rotation composed with a reflection − we

take as our rotation of the plane the transformation x =

Px′, where P =

(
1/
√
5 2/

√
5

−2/
√
5 1/

√
5

)
. This transforma-

tion changes the equation of the conic to the form

(Px′)
T
A (Px′) + JT (Px′) +H = 0

or

(x′)
T (

PTAP
)
x′ +

(
JTP

)
x′ +H = 0

Since PTAP =

(
5 0

0 0

)
, this is the equation

(
x′ y′

)( 5 0

0 0

)(
x′

y′

)
+(−6−8)

(
1√
5

2√
5

− 2√
5

1√
5

)(
x′

y′

)

+5=0 (8)
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which we can rewrite in the form

5x′2 + 2
√
5x′ − 4

√
5y′ + 5 = 0

We may rewrite this equation in the form

5

(
x′2 +

2√
5
x′
)
− 4

√
5y′ + 5 = 0

so that, on completing the square, we have

5

(
x′ +

1√
5

)2

− 4
√
5y′ + 4 = 0

or

5

(
x′ +

1√
5

)2

− 4
√
5

(
y′ − 1√

5

)
= 0

or(
x′ +

1√
5

)2

=
4√
5

(
y′ − 1√

5

)
(∗∗)

This is the equation of a parabola. (It is not quite in

standard form (y′′)2 = 4ax′′, but in the similar form

(x′′)2 = 4ay′′; the argument will be similar.)

From equation (∗∗) it follows that the vertex of the

parabola is the point where x′+ 1√
5
= 0 and y′ − 1√

5
= 0,

that is, where x′ = − 1√
5
and y′ = 1√

5
. From the equa-

tion x = Px′, it follows that in terms of the original co-
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ordinate system this is the point(
x

y

)
=

(
1√
5

2√
5

− 2√
5

1√
5

)(
− 1√

5
1√
5

)

=

(
1
5
3
5

)
,

that is, the point
(
1
5
, 3
5

)
.

It also follows from equation (∗∗) that the axis of the

parabola has equation x′ + 1√
5
= 0 , or x′ = − 1√

5
. Then,

since the matrix P is orthogonal we can rewrite the equa-

tion x = Px′ in the form x′ = P−1x = PTx, so that(
x′

y′

)
=

(
1√
5

− 2√
5

2√
5

1√
5

)(
x

y

)

or as a pair of equations

x′ =
1√
5
x− 2√

5
y

y′ =
2√
5
x+

1√
5
y

It follows that the equation, x′ = − 1√
5
, of the axis of

the parabola can be expressed in terms of the original

coordinate system as

1√
5
x− 2√

5
y = − 1√

5
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or

x− 2y = −1

□

In fact, using the above strategy we can prove the following

result.

Theorem 3. A non-degenerate conic with equation

Ax2 +Bxy + Cy2 + Fx+Gy +H = 0

and matrix A =

(
A 1

2
B

1
2
B C

)
can be classified as follows:

(a) If det A < 0, E is a hyperbola.

(b) If det A = 0, E is a parabola.

(c) If det A > 0, E is an ellipse.

Problem 3. Use Theorem 3 to classify the non-degenerate

conics in R2 with the following equations.

(a) 3x2 − 8xy + 2y2 − 2x+ 4y − 16 = 0

(b) x2 + 8xy + 16y2 − x+ 8y − 12 = 0

(c) 52x2 − 72xy + 73y2 − 32x− 74y + 28 = 0

Solution: Here we use Theorem 3 .

(a) The matrix of the non-degenerate conic is A =
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(
3 −4

−4 2

)
, so that

detA = 6− 16 = −10 < 0

so that the conic is a hyperbola.

(b) The matrix of the non-degenerate conic is A =(
1 4

4 16

)
, so that

detA = 16− 16 = 0,

so that the conic is a parabola.

(c) The matrix of the non-degenerate conic is A =(
52 −36

−36 73

)
, so that

detA = 52 · 73− 362 = 3796− 1296 = 2500 > 0

so that the conic is an ellipse.

□
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1.4 Exercises

Section 1.1

1. Determine the equation of the circle with centre (2, 1)

and radius 3.

2. Determine the points of intersection of the line with equa-

tion y = x+ 2 and the circle in Exercise 1 .

3. Determine whether the circles with equations

2x2 +2y2 − 3x− 4y+2 = 0 and x2 + y2 − 4x+2y = 0

intersect orthogonally. Find the equation of the line

through their points of intersection.

4. This question concerns the parabola y2 = 4ax(a > 0)

with parametric equations x = at2, y = 2at and focus F .

Let P and Q be points on the parabola with parameters

t1 and t2 , respectively.

(a) If PQ subtends a right angle at the vertex O of the

parabola, prove that t1 · t2 = −4.

(b) If t1 = 2 and PQ is perpendicular to OP , prove that

t2 = −4.

5. This question concerns the rectangular hyperbola xy =

c2(c > 0) with parametric equations x = ct, y = c/t. Let
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P and Q be points on the hyperbola with parameters t1

and t2 , respectively.

(a) Determine the equation of the chord PQ.

(b) Determine the coordinates of the point N where PQ

meets the x -axis.

(c) Determine the midpoint M of PQ.

(d) Prove that OM = MN , where O is the origin.

6. Let P be a point in the plane and C a circle with centre O

and radius r. Then we define the power of P with respect

to C as

power of P with respect to C = OP 2 − r2

(a) Determine the sign of the power of P with respect

to C when

(i) P lies inside C;

(ii) P lies on C;

(iii) P lies outside C.

In parts (b) and (c) we regard distances as directed

distances; that is, distances along a line in one direc-

tion have a positive sign associated with their length

and distances in the opposite direction have a nega-

tive sign associated with their length.

(b) If P lies inside C and a line through P meets C at

two distinct points A and B, prove that
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power of P with respect to C = PA · PB

(c) If P lies outside C, a line through P meets C at

two distinct points A and B, and PT is one of the

tangents from P to C, prove that

power of P with respect to C = PA · PB

= PT 2.

(d) If C has equation x2 + y2 + fx + gy + h = 0 and

P has coordinates (x, y), find the power of P with

respect to C in terms of x, y, f, g and h.

7. (a) Let a plane π in R3 meet both portions of a right

circular cone, in two separate portions of a curve E.

Let the two spheres inside the cone (on the same side

of π as the vertex) that each touch both the cone in

a horizontal circle (C1 and C2 , respectively) and π

touch π at F and F ′, respectively. Let P be any

point of E, and the generator of the cone through P

meet C1 and C2 at A and B, respectively. Prove that

PF ′ − PF = AB. Deduce that E is a hyperbola.

(b) Let a plane π in R3 that is parallel to a generator

of a right circular cone meet the cone in a curve

E. Let the sphere inside the cone (on the same side

of π as the vertex) that touches both the cone in a

horizontal circle C and π meet π at F . Let P be any

point of E, and the generator of the cone through P
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meet C at A. Let N be the foot of the perpendicular

from P to the line of intersection of the horizontal

plane and π, and let NA meet C again at M . Prove

that PF = PN . Deduce that E is a parabola.

Section 1.2

1. Determine the slope of the tangent to the cycloid in R2

with parametric equations

x = t− sin t, y = 1− cos t

at the point with parameter t, where t is not a multiple

of 2π.

2. Determine the equation of the tangent to the curve in R2

with parametric equations

x = 1 + 4t+ t2, y = 1− t

at the point where t = 1.

3. Let P be a point on the ellipse with equation x2

a2
+ y2

b2
= 1,

where a > b > 0, b2 = a2 (1− e2), and 0 < e < 1.

(a) If P has coordinates (a cos t, b sin t), determine the

equation of the tangent at P to the ellipse.

(b) Determine the coordinates of the point T where the

tangent in part (a) meets the directrix x = a/e.
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(c) Let F be the focus with coordinates (ae, 0). Prove

that PF is perpendicular to TF .

4. The perpendicular from a point P on the hyperbola H

with parametric equations x = 2 sec t, y = 3 tan t, to the

x -axis meets the x -axis at the point N The tangent at

P to H meets the x -axis at the point T .

(a) Write down the coordinates of N .

(b) Find the coordinates of T .

(c) Prove that ON ·OT = 4, where O is the origin.

5. Let P be a point on the ellipse with equation x2

a2
+ y2

b2
= 1,

where a > b > 0, b2 = a2 (1− e2), and 0 < e < 1.

(a) If P has coordinates (a cos t, b sin t), determine the

equation of the normal at P to the ellipse.

(b) Determine the coordinates of the point Q where the

normal in part (a) meets the axis y = 0

(c) Let F be the focus with coordinates (ae, 0). Prove

that QF = e · PF .

6. Let F denote the

family of parabolas {(x, y) : y2 = 4a(x+ a)} as a takes

all positive values, and G denote the family of parabolas

{(x, y) : y2 = 4a(−x + a)} as a takes all positive values.

Use the reflection property of the parabola to prove that,

if F ∈ F and G ∈ G , then, at each point of intersection,

F and G cross at right angles.
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7. Prove that a perpendicular from the focus nearer to a

point P on an ellipse meets the tangent at P on the aux-

iliary circle of the ellipse, in the following geometric way.

It is sufficient to prove the result for the ellipse E : x2

a2
+

y2

b2
= 1, a > b > 0, and points P of E in the first quadrant.

Let T be the foot of the perpendicular from F (ae, 0) to

the tangent at P , let T ′ be the foot of the perpendicular

from F ′(−ae, 0) to the tangent at P , and let FT meet

F ′P at X.

(a) Prove that the triangles ∆FPT and ∆XPT are con-

gruent.

(b) Using the sum of focal distances property for E,

prove that F ′X = 2a.

(c) Prove that OT is parallel to F ′X, where O is the

centre of E.

(d) Prove that OT = a, so that T lies on the auxiliary

circle of E.

Remark: A similar argument to that in parts (a)-

(d) shows that OT̄ = a, so that T ′ also lies on the

auxiliary circle of E.

8. (a) Let E be an ellipse with major axis AB and minor

axis CD, and let the tangents to E at A and B meet

the tangent atD at the points T and T ′, respectively.

Prove that the circle with diameter TT ′ cuts the

major axis of E at its foci.
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(b) Let H be a hyperbola with major axis AB, whose

midpoint is O, and let the perpendicular at A to the

major axis meet an asymptote at a point T . Prove

that the circle with centre O and radius OT cuts the

major axis of H at its foci.

Section 1.3

1. Classify the conics in R2 with the following equations.

Determine the centre/vertex and axis of each.

(a) x2 − 4xy − 2y2 + 6x+ 12y + 21 = 0

(b) 5x2 + 4xy + 5y2 + 20x+ 8y − 1 = 0

(c) x2 − 4xy + 4y2 − 6x− 8y + 5 = 0

(d) 21x2 − 24xy + 31y2 + 6x+ 4y − 25 = 0

(e) 3x2 − 10xy + 3y2 + 14x− 2y + 3 = 0

2. Determine the eccentricities of the conics in parts (a), (b)

and (c) of Exercise 1 .
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MODULE 2

AFFINE GEOMETRY

2.1 Geometry and Transformations

Before embarking on a study of various other geometries, it

is useful first to look back at our familiar Euclidean geometry.

2.1.1 What is Euclidean Geometry?

To help us answer this question, we begin by considering

the following wellknown result.

Example 1. Let △ABC be a triangle in which ∠ABC =

∠ACB. Prove that AB = AC
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Solution: First, reflect the triangle in the perpendicular bisec-

tor of BC, so that the points B and C change places and the

point A moves to some point A′, say. Since reflection preserves

angles, it follows that ∠A′BC = ∠ACB.

Also, we are given that ∠ACB = ∠ABC, so

∠A′BC = ∠ABC

But this can happen only if A′ lies on the line through A and

B. Similarly,

∠A′CB = ∠ABC = ∠ACB

so A′ must also lie on the line through A and C. This means

that A′ and A must coincide. Hence the line segment AB

reflects to the line segment AC, and vice versa. Since reflection

preserves lengths, it follows that AB = AC. □

Problem 1. Let A and B be two points on a circle, and let

the tangents to the circle at A and B meet at P . Prove that

AP = BP .
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Hint: Consider a reflection in the line which passes through P

and the centre of the circle.

Solution: First, reflect the figure in the line through O, the

centre of the circle, and P . Under this reflection, P remains

fixed, and the circle maps onto itself. In particular, the point A

maps to a point A′ on the circle, and so the tangent PA maps

onto the line PA′.

Now the tangent PA meets the circle at a single point A, so

the image of the tangent must meet the circle at a single point.

But the only way in which that can happen is if A′ coincides

with B. Hence the line segment PA is reflected onto the line

segment PB. Since reflection preserves lengths, it follows that

PA = PB. □

The result in Example 1 is concerned with the properties of

length and angle associated with the triangle△ABC. To inves-

tigate these properties, we introduced a reflection that enabled

us to compare various lengths and angles. We were able to do

this because reflections leave lengths and angles unchanged.
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Of course, reflections are not the only transformations that

preserve lengths and angles: other examples include rotations

and translations. In general, any transformation that preserves

lengths and angles can be used to tackle problems which involve

these properties. In fact, we need worry only about leaving

distances unchanged, since any transformation from R2 onto R2

that changes angles must also change lengths. Transformations

that leave distances unchanged are called isometries.

Definition. An isometry of R2 is a function which maps

R2 onto R2 and preserves distances.

In fact, every isometry has one of the following forms:

a translation along a line in R2

a reflection in a line in R2;

a rotation about a point in R2;

a composite of translations, reflections and rotations in

R2.

The composite of any two isometries is also an isometry,

and so it is easy to multiple of 2π. verify that the set S (R2) of

isometries of R2 forms a group under composition of functions.

These observations can be used to build up the transformations

we need in order to prove Euclidean results.
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Example 2. Prove that if △ABC and ∆DEF are two trian-

gles such that

AB = DE, AC = DF and ∠BAC = ∠EDF

then BC = EF,∠ABC = ∠DEF and ∠ACB = ∠DFE.

B C

A

|||

F

D

E

||
|

Solution: It is sufficient to show that there is an isometry

which maps △ABC onto ∆DEF . We construct this isometry

in stages, starting with the translation which maps A to D.
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This translation maps △ABC onto ∆DB′C ′, where B′ and C ′

are the images of B and C under the translation.

B C

A

|||

translate
F

E

||
|

B′ C ′

|||

D rotate

Since we are given that DF = AC, and since the translation

maps AC onto DC ′, it follows that DF = DC ′. We can there-

fore rotate the point C ′, about D, until it coincides with the

point F . This rotation maps ∆DB′C ′ onto ∆DB′′F , as shown

in the margin, where B′′ is the image of B′ under the rotation.

Finally, notice that

∠FDE = ∠CAB (given)

= ∠C ′DB′ (translation)

= ∠FDB′′ (rotation)

so either B′′ lies on DE or the reflection of B′′ in the line

FD lies on DE. Also

DE = AB (given)

= DB′ (translation)

= DB′′ (rotation)
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It follows that either B′′ coincides with E or the reflection

of B′′ in the line FD coincides with E.

So, composing the translation, the rotation, and (if nec-

essary) a reflection, we obtain the required isometry that

maps △ABC onto ∆DEF . Since isometries preserve length

and angle, it follows that BC = EF,∠ABC = ∠DEF and

∠ACB = ∠DFE. □

Problem 2. Prove that if△ABC and ∆DEF are two triangles

such that

AC = DF, ∠BAC = ∠EDF and ∠ACB = ∠DFE,

then BC = EF,AB = DE and ∠ABC = ∠DEF .

Solution: It is sufficient to show that there is an isometry

which maps ∆ABC onto ∆DEF . To construct this isometry,

we start with the translation which maps A to D. This trans-

lation maps ∆ABC onto ∆DB′C ′, where B′ and C ′ are the

images of B and C, respectively.

Since DC ′ = AC = DF , we can now rotate the point C ′

aboutD until it coincides with the point F . This rotation maps

∆DB′C ′ onto the triangle ∆DB′′F shown below, where B′′ is

the image of B′ under the rotation.
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Now notice that

∠EDF = ∠BAC (given)

= ∠B′DC ′ (translation)

= ∠B′′DF (rotation),

so either B′′ lies on DE or the reflection of B′′ in the line DF

lies on DE. Also

∠DFE = ∠ACB (given)

= ∠DC ′B′ (translation)

= ∠DFB′′ (rotation),

so either B′′ lies on FE or the reflection of B′′ in the line DF

lies on FE. It follows that either B′′ coincides with E or the

reflection of B′′ in the line DF coincides with E.

So, composing the translation, the rotation and (if neces-

sary) a reflection, we obtain the required isometry which maps

△ABC onto ∆DEF . Since isometries preserve length and

angle, it follows that BC = EF,AB = DE and ∠ABC =

∠DEF . □

We can now answer the question ’What is Euclidean ge-

ometry?’. Euclidean geometry is the study of those properties

of figures that are unchanged by the group of isometries. We

call these properties Euclidean properties. Roughly plane R2.

speaking, a Euclidean property is one that is preserved by a
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rigid figure as it moves around the plane. Of course, these

properties include distance and angle, but they also include

other properties such as collinearity of points and concurrence

of lines. This idea, that geometry can be thought of in terms

of a group of transformations acting on a space, is known as

the Kleinian view of geometry. It enables us to generate many

geometries, without losing sight of the relationship between

them.

When we consider geometries in this way, it is often con-

venient to have an algebraic representation for the transforma-

tions involved. This not only enables us to solve problems in

the geometry algebraically, but also provides us with formulas

that can be used to compare different geometries.

In the case of Euclidean geometry, perhaps the easiest way

to represent isometries algebraically is to use matrices. For

example, the function defined by

t :

(
x

y

)
7→

(
cos θ − sin θ

sin θ cos θ

)(
x

y

)
+

(
e

f

) (
(x, y) ∈ R2

)
(1)

is an isometry because it is the composite of an anticlock-

wise rotation through an angle θ about the origin, followed by

a translation through the vector (e, f).

Similarly, the function
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t :

(
x

y

)
7→

(
cos θ sin θ

sin θ − cos θ

)(
x

y

)
+

(
e

f

) (
(x, y) ∈ R2

)
(2)

is an isometry because it is the composite of a reflection in

the line through the origin that makes an angle θ/2 with the x

-axis, followed by a translation through the vector (e, f)

Remarkably, we can represent any isometry by one or other

of the forms given in (1) and (2). To see this, notice that any

isometry t can be written in the form

t(x) = t0(x) + (e, f)
(
x ∈ R2

)
(3)

where t0 is an isometry which fixes the origin. Indeed, if

we let (e, f) = t(0), then we can let t0 be the transformation

defined by t0(x) = t(x)−(e, f). This is an isometry because it is

the composite of the isometry t and the translation through the

vector −(e, f). It fixes the origin since t0(0) = t(0)−(e, f) = 0.

Now an isometry that fixes the origin must be either a rota-

tion about the origin, or a reflection in a line through the origin.

If t0 is a rotation about the origin, then (3) can be written in

the matrix form given in (1), whereas if t0 is a reflection in a

line through the origin, then (3) can be written in the matrix

form given in (2).

So together, equations (1) and (2) provide us with an al-
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gebraic representation of all possible isometries of the plane.

The next problem indicates how we can obtain a more concise

description of this algebraic representation by using orthogonal

matrices to combine equations (1) and (2).

Problem 3. Show that both the matrices

(
cos θ − sin θ

sin θ cos θ

)
and

(
cos θ sin θ

sin θ − cos θ

)
which appear in (1) and (2), are orthogonal for each real num-

ber θ.

Solution: Here we use the fact that a matrix U is orthogonal

if UTU = I. We have(
cos θ sin θ

− sin θ cos θ

)(
cos θ − sin θ

sin θ cos θ

)
=

(
1 0

0 1

)

and (
cos θ sin θ

sin θ − cos θ

)(
cos θ sin θ

sin θ − cos θ

)
=

(
1 0

0 1

)
.

So both matrices are orthogonal for all real θ. □

By applying the solution of Problem 3 to equations (1) and

(2), we see that every isometry t has an algebraic representation

of the form

t(x) = Ux+ a
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where U is an orthogonal 2 × 2 matrix, and a is a vector in

R2.

Definition. A Euclidean transformation of R2 is a function

t : R2 → R2 of the form

t(x) = Ux+ a

where U is an orthogonal 2 × 2 matrix and a ∈ R2. The

set of all Euclidean 1sformations of R2 is denoted by E(2).

We may summarize the discussion above by saying that every

isometry of the plane is a Euclidean transformation of R2.

In fact, the converse is also true, for if U is any orthogonal

matrix, then its columns are orthonormal. In particular, its

first and second columns have unit length and can therefore

be written in the form

(
cos θ

sin θ

)
and

(
cosϕ

sinϕ

)
, respectively, for

some real θ, ϕ. For these to be orthonormal, we must have

cos θ · cosϕ + sin θ · sinϕ = 0, so that tan θ · tanϕ = −1 and

hence ϕ = θ ± π
2
. It follows that the second column must be

(
cos(θ + π/2)

sin(θ + π/2)

)
=

(
− sin θ

cos θ

)
or(

cos(θ − π/2)

sin(θ − π/2)

)
=

(
sin θ

− cos θ

)
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So

U =

(
cos θ − sin θ

sin θ cos θ

)
or U =

(
cos θ sin θ

sin θ − cos θ

)

It follows that every Euclidean transformation t(x) = Ux+

a of R2 has one of the forms given in equations (1) and (2).

Since both of these forms represent isometries of the plane,we

have the following theorem.

Theorem 1. Every isometry of R2 is a Euclidean trans-

formation of R2 and vice versa.

Now the set of all isometries of R2 forms a group under

composition of functions, so it follows from Theorem 1 that the

same must be true of the set of all Euclidean transformations

of R2. We therefore have the following theorem.

Theorem 2. The set of Euclidean transformations of R2

forms a group under the operation of composition of func-

tions.

It is instructive to check the group axioms algebraically, for in

the process of doing so we obtain formulas for the composites

and inverses of Euclidean transformations.

We start by considering closure. Suppose that t1 and t2 are

two Euclidean transformations given by
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t1(x) = U1x+ a1 and t2(x) = U2x+ a2

where U1 and U2 are orthogonal 2× 2 matrices. Then the

composite t1 ◦ t2 is given by

t1 ◦ t2(x) = t1 (U2x+ a2)

= U1 (U2x+ a2) + a1

= U1U2x+ (U1a2 + a1)

This is a Euclidean transformation since U1U2 is orthogo-

nal. Indeed,

(U1U2)
T = UT

2
UT

1
= U−1

2
U−1

1
= (U1U2)

−1

So the set of Euclidean transformations is closed under compo-

sition of functions.

Problem 4. Let the Euclidean transformations t1 and t2 of R2

be given by

t1(x) =

(
3
5

−4
5

4
5

3
5

)
x+

(
1

−2

)

and

t2(x) =

(
−4

5
3
5

3
5

4
5

)
x+

(
−2

1

)
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Determine t1 ◦ t2 and t2 ◦ t1 .

Solution: First, t1 ◦ t2(x) is equal to

t1

((
−4

5
3
5

3
5

4
5

)
x+

(
−2

1

))

=

(
3
5

−4
5

4
5

3
5

)((
−4

5
3
5

3
5

4
5

)
x+

(
−2

1

))
+

(
1

−2

)

=

(
3
5

−4
5

4
5

3
5

)(
−4

5
3
5

3
5

4
5

)
x+

(
−2

−1

)
+

(
1

−2

)

=

(
−24

25
− 7

25

− 7
25

24
25

)
x+

(
−1

−3

)
.

Next, t2 ◦ t1(x) is equal to

t2

((
3
5

−4
5

4
5

3
5

)
x+

(
1

−2

))
=

(
−4

5
3
5

3
5

4
5

)((
3
5

−4
5

4
5

3
5

)
x+

(
1

−2

))
+

(
−2

1

)
(4)

=

(
3
5

3
5

4
5

)(
3
5

−4
5

4
5

3
5

)
x+

(
−2

−1

)
+

(
−2

1

=

(
0 1

1 0

)
x+

(
−4

0

)
(6)

□

Next recall that under composition of functions the identity

is the transformation given by i(x) = x. This is a Euclidean
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transformation since it can be written in the form

i(x) = Ix+ 0

where I is the 2× 2 identity matrix, which is orthogonal.

The next problem asks you to show that inverses exist.

Problem 5. Prove that if t1 is a Euclidean transformation of

R2 given by

t1(x) = Ux+ a
(
x ∈ R2

)
then:

(a) the transformation of R2 given by

t2(x) = U−1x−U−1a
(
x ∈ R2

)
is also a Euclidean transformation;

(b) the transformation t2 is the inverse of t1 .

The solution of Problem 5 shows that we can calculate the

inverse of a Euclidean transformation by using the following

result.

The inverse of the Euclidean transformation t(x) = Ux+ a is

given by

t−1(x) = U−1x−U−1a.
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Solution:

(a) Since U is an orthogonal matrix, it follows that U−1 =

UT. Taking the transpose of both sides, we have

(
U−1

)T
=
(
UT
)T

= U =
(
U−1

)−1

Thus U−1 is an orthogonal matrix, and so t2 is a Eu-

clidean transformation.

(b) We have

t1 ◦ t2(x) = t1
(
U−1x−U−1a

)
= U

(
U−1x−U−1a

)
+ a

= (x− a) + a

= x

and
t2 ◦ t1(x) = t2(Ux+ a)

= U−1(Ux+ a)−U−1a

=
(
x+U−1a

)
−U−1a

= x

so t2 is the inverse of t1 .

□

Problem 6. Determine the inverse of the Euclidean transfor-

mation given by
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t(x) =

(
3
5

−4
5

4
5

3
5

)
x+

(
1

−2

)
.

Solution: We have(
3
5

−4
5

4
5

3
5

)−1

=

(
3
5

4
5

−4
5

3
5

)

and (
3
5

4
5

−4
5

3
5

)(
1

−2

)
=

(
−1

−2

)
so that

t−1(x) =

(
3
5

4
5

−4
5

3
5

)
x+

(
1

2

)
.

□

Finally, composition of functions is always associative. So

all four group properties hold, as we expected.

Earlier, we described Euclidean geometry as the study of

those properties of figures that are preserved by isometries.

Having identified these isometries with the group of Euclidean

transformations, we can now give the equivalent algebraic de-

scription of Euclidean geometry. Euclidean geometry is the

study of those properties of figures that are preserved by Eu-

clidean transformations of R2.
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2.1.2 Euclidean-Congruence

In the solution to Example 2 we showed that if two triangles

△ABC and △DEF are such that AB = DE,AC = DF and

∠BAC = ∠EDF , then there is a Euclidean transformation

which maps △ABC onto ∆DEF .

B C

A

|||

F

D

E

||
|

The existence of this transformation enabled us to deduce

that both triangles have the same Euclidean properties. In

particular, we were able to deduce that BC = EF,∠ABC =

∠DEF and ∠ACB = ∠DFE.
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In order to formalize this way of relating two figures, we

say that two figures are congruent if one can be moved to fill

exactly the position of the other by means of a Euclidean trans-

formation. Loosely speaking, two figures are congruent if they

have the same size and shape.

Later we consider congruence with respect to other groups

of transformations (that is, congruence in other geometries), so

if there is any danger of confusion we sometimes say that two

figures are Euclidean-congruent.

Definition. A figure F1 is Euclidean-congruent to a figure

F2 if there is a Euclidean transformation which maps F1

onto F2

For example, any two circles of unit radius are Euclidean-

congruent to each other because we can map one of the cir-

cles onto the other by means of a translation that makes their

centres coincide.

Problem 7. Which of the following sets consist of figures that

are Euclidean-congruent to each other?

(a) The set of all ellipses

(b) The set of all line segments of length 1

(c) The set of all triangles

(d) The set of all squares that have sides of length 2
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Solution:

(a) Not congruent

(b) Congruent

(c) Not congruent

(d) Congruent

□

Earlier, we emphasized that the Euclidean transformations

form a group. This is important because it ensures that

Euclidean-congruence has the kind of properties that we should

expect. For example, we should expect every figure to be con-

gruent to itself. Also, if a figure F1 is congruent to a figure F2 ,

then we should expect F2 to be congruent to F1 . We can, in

fact, establish the following result.

Theorem 3. Euclidean-congruence is an equivalence rela-

tion.

Proof: We show that the three equivalence relation axioms

E1, E2 and E3 hold.

E1 REFLEXIVE: For all figures F in R2, the identity trans-

formation maps F onto itself; so Euclidean-congruence is reflex-

ive.

E2 SYMMETRIC: Let a figure F1 in R2 be congruent to a

figure F2 , and let t be a Euclidean transformation which maps

F1 onto F2 . Then the inverse Euclidean transformation t−1
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maps F2 onto F1 , so that F2 is congruent to F1 . Thus Euclidean-

congruence is symmetric.

E3 TRANSITIVE: Let a figure F1 in R2 be congruent to a

figure F2 , and let F2 be congruent to a figure F3 . Then there

exist Euclidean transformations t1 mapping F1 onto F2 and

t2 mapping F2 onto F3 . Thus the Euclidean transformation

t2 ◦ t1 maps F1 onto F3 , so that F1 is congruent to F3 . Hence

Euclidean-congruence is transitive.

It follows that Euclidean-congruence is an equivalence relation,

because it satisfies the axioms E1, E2 and E3. □

Problem 8. Prove that if two figures in R2 are each Euclidean-

congruent to a third figure, then they are Euclidean-congruent

to each other.

Solution: Suppose that we are given three plane figures F1 , F2

and F3 such that

F1 is congruent to F3 (∗)

and

F2 is congruent to F3 . (∗∗)

It follows from (∗∗) and the symmetric property of congruence

that

F3 is congruent to F2 . (∗ ∗ ∗)
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Hence from (∗) and (∗ ∗ ∗) and the transitive property of con-

gruence, F1 is congruent to F2 , as required. □

Since Euclidean-congruence is an equivalence relation, it

partitions the set of all figures into disjoint equivalence classes.

Each class consists of figures which are Euclidean-congruent to

each other, and hence share the same Euclidean properties (for

example, one class consists of all circles of unit radius, another

class consists of all equilateral triangles with sides of length 3 ,

and so on). If we wish to show that two figures have the same

Euclidean properties, then it is sufficient to show that they are

Euclidean-congruent.

Now Euclidean geometry is just one of several different ge-

ometries. Each geometry is defined by a group G of transfor-

mations that act on a space. In general, we say that two fig-

ures are G -congruent if there is a transformation in G which

maps one of the figures onto the other. Since the only prop-

erties used in the proof of Theorem 3 are the group proper-

ties of Euclidean transformations, the theorem holds also with

’ G -congruent’ in place of ’Euclidean-congruent’. Thus, like

Euclidean-congruence, G -congruence is an equivalence relation

that partitions the set of all figures into disjoint equivalence

classes.

This idea of partitioning figures into equivalence classes is

central to geometry. It enables us to distinguish between fig-

ures in different equivalence classes, without having to worry
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about the differences between figures in the same equivalence

class. For example, if we are interested in whether a conic is an

ellipse rather than a hyperbola or a parabola, but do not care

about its shape (that is, the ratio of the lengths of its axes),

we might choose to work with some geometry whose group of

transformations makes all ellipses congruent to each other -

but not congruent to any hyperbola or parabola. We describe

a group of transformations which defines such a geometry in

Section 2.2.

2.2 Affine Transformations and Par-

allel Projections

2.2.1 Affine Transformations

In Section 2.1 you met a new approach to Euclidean ge-

ometry in R2− namely, the idea that Euclidean geometry of

R2 can be interpreted as a space, R2, together with the group

of Euclidean transformations which act on that space. Recall

that a Euclidean transformation is a function t : R2 → R2 of

the form

t(x) = Ux+ a
(
x ∈ R2

)
where U is an orthogonal 2 × 2 matrix. Euclidean properties

of figures are those, like distance and angle, that are preserved

by these transformations.
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In this section we meet the first of our new geometries in

R2− affine geometry. This geometry consists of the space R2

together with a group of transformations, the affine transfor-

mations, acting on R2.

Definition. An affine transformation of R2 is a function

t : R2 → R2 of the form

t(x) = Ax+ b,

where A is an invertible 2× 2 matrix and b ∈ R2. The set

of all affine transformations of R2 is denoted by A(2).

Remark

Note that every Euclidean transformation of R2 is an affine

transformation of R2 since every orthogonal matrix is invert-

ible. (In terms of groups, the group of Euclidean transforma-

tions of R2 is a proper subgroup of the group of affine transfor-

mations of R2.) This means that all properties of figures that

are preserved by affine transformations must be preserved also

by Euclidean transformations.

Problem 1. Determine whether or not each of the following

transformations of R2 is an affine transformation.
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(a) t1(x) =

(
1 3

1 2

)
x+

(
4

−2

)
(b) t2(x) =

(
−6 5

3 2

)
x+

(
2

1

)

(c) t3(x) =

(
−2 −1

8 4

)
x+

(
1

3

)
(d) t4(x) =

(
5 −3

−2 2

)
x

Solution: We use the fact that a 2 × 2 matrix is invertible if

and only if its determinant is non-zero. Each transformation is

of the form

x 7→ Ax+ b

where A is a 2× 2 matrix, and so it is an affine transformation

if and only if the determinant of the matrix A is non-zero.

(a) Here, ∣∣∣∣∣ 1 3

1 2

∣∣∣∣∣ = 2− 3 = −1

which is non-zero; hence t1 is an affine transformation.

(b) Here, ∣∣∣∣∣ −6 5

3 2

∣∣∣∣∣ = −12− 15 = −27

which is non-zero; hence t2 is an affine transformation.

(c) Here, ∣∣∣∣∣ −2 −1

8 4

∣∣∣∣∣ = −8 + 8 = 0;

hence t3 is not an affine transformation.
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(d) Here, b = 0 and∣∣∣∣∣ 5 −3

−2 2

∣∣∣∣∣ = 10− 6 = 4

which is non-zero; hence t4 is an affine transformation.

□

The algebra required to compose affine transformations is

similar to the algebra that we used to compose Euclidean trans-

formations.

Problem 2. For the transformations of R2 given in Problem 1,

determine formulas for the following composites. In each case,

state whether or not the composite is an affine transformation.

(a) t1 ◦ t2 (b) t2 ◦ t4

Solution:

(a) Here, t1 ◦ t2(x) is equal to

t1

((
−6 5

3 2

)
x+

(
2

1

))
=

(
1 3

1 2

)((
−6 5

3 2

)
x+

(
2

1

))
+

(
4

−2

)

=

(
1 3

1 2

)(
−6 5

3 2

)
x+

(
5

4

)
+

(
4

−2

)

=

(
3 11

0 9

)
x+

(
9

2

)
.
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Since ∣∣∣∣∣ 3 11

0 9

∣∣∣∣∣ = 27− 0 = 27 ̸= 0

it follows that t1 ◦ t2 is an affine transformation.

(b) Here, t2 ◦ t4(x) is equal to

t2

((
5 −3

−2 2

)
x

)
=

(
−6 5

3 2

)((
5 −3

−2 2

)
x

)
+

(
2

1

)

=

(
−40 28

11 −5

)
x+

(
2

1

)
.

Since ∣∣∣∣∣ −40 28

11 −5

∣∣∣∣∣ = 200− 308 = −108 ̸= 0

it follows that t2 ◦ t4 is an affine transformation.

□

We now verify our assertion above that the set of affine

transformations forms a group.

Theorem 1. The set of affine transformations A(2) forms

a group under the operation of composition of functions.

Proof: We check that the four group axioms hold.

G1 CLOSURE: Let t1 and t2 be affine transformations given

127



by

t1(x) = A1x+ b1 and t2(x) = A2x+ b2

where A1 and A2 are invertible 2× 2 matrices. Then, for

each x ∈ R2 ,

(t1 ◦ t2) (x) = t1 (A2x+ b2)

= A1 (A2x+ b2) + b1

= (A1A2)x+ (A1b2 + b1) .

Since A1 and A2 are invertible, it follows that A1A2 is

also invertible. So by definition t1 ◦ t2 is an affine trans-

formation.

G2 IDENTITY: Let i be the affine transformation given by

i(x) = Ix+ 0
(
x ∈ R2

)
where I is the 2 × 2 identity matrix. If t is an affine

transformation given by

t(x) = Ax+ b
(
x ∈ R2

)
,

then, for each x ∈ R2 ,

(t ◦ i)(x) = A(Ix+ 0) + b = Ax+ b = t(x)

and

(i ◦ t)(x) = I(Ax+ b) + 0 = Ax+ b = t(x)
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Thus t ◦ i = i ◦ t = t. Hence i is the identity transforma-

tion.

G3 INVERSES: If t is an arbitrary affine transformation

given by

then we can define another affine transformation t′ by

t′(x) = A−1x−A−1b

t(x) = Ax+ b
(
x ∈ R2

)
Now for each x ∈ R2, we have

(t ◦ t′) (x) = t
(
A−1x−A−1b

)
= A

(
A−1x−A−1b

)
+ b

=
(
AA−1x−AA−1b

)
+ b

= (x− b) + b

= x Also,

(t′ ◦ t) (x) = t′(Ax+ b)

= A−1(Ax+ b)−A−1b

=
(
A−1Ax+A−1b

)
−A−1b

=
(
x+A−1b

)
−A−1b

= x.

Thus t ◦ t′ = t′ ◦ t = i. Hence t′ is an inverse for t.

G4 ASSOCIATIVITY: Composition of functions is always
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associative.

It follows that the set of affine transformations A(2) forms a

group under composition of functions. □

The above proof shows that we can calculate the inverse of

an affine transformation by using the following result.

The inverse of the affine transformation t(x) = Ax+ b is

given by

t−1(x) = A−1x−A−1b.

Problem 3. Find the inverse of the affine transformation

t(x) =

(
1 3

1 2

)
x+

(
4

−2

)

Solution: The inverse of a 2× 2 matrix A =

(
a b

c d

)
is

A−1 =
1

ad− bc

(
d −b

−c a

)
.

Hence (
1 3

1 2

)−1

=

(
−2 3

1 −1

)
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and (
−2 3

1 −1

)(
4

−2

)
=

(
−14

6

)
,

so that

t−1(x) =

(
−2 3

1 −1

)
x+

(
14

−6

)
.

□

Having shown that the set of affine transformations forms

a group under composition of functions, we now define affine

geometry to be the study of those properties of figures in the

plane R2 that are preserved by affine transformations. These

are the so-called affine properties of figures. We begin our in-

vestigation of affine geometry by considering the three affine

properties listed below.

Basic Properties of Affine Transformations

Affine transformations:

1. map straight lines to straight lines;

2. map parallel straight lines to parallel straight lines;

3. preserve ratios of lengths along a given straight line.

There are two approaches that we shall use to investigate

these properties. One approach is to use the definition of an

affine transformation to investigate the properties algebraically;
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we do this in Section 2.3. First, however, we investigate the

properties geometrically. We begin to do this in the next sub-

section by introducing a special type of affine transformation

for which there is a simple geometric interpretation.

2.2.2 Parallel Projections

A parallel projection is a one-one mapping from R2 onto

itself, defined in the following way. First, we think of its domain

and codomain as two separate copies of R2.

Geometrically, we can represent these copies of R2 by two sep-

arate planes, each equipped with a pair of rectangular axes.

Next we place these planes into three-dimensional space; we

denote the domain plane by π1 and the codomain plane by π2 .
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Now imagine parallel rays of light shining through π1 and

π2 . Each point P in the plane π1 has a (unique) ray passing

through it, that also passes through a point P ′, say, in the plane

π2 . This provides us with a one-one correspondence between

points in the two planes π1 and π2 . We call the function p

which maps each point P in π1 to the corresponding point P ′

in π2 a parallel projection from π1 onto π2 .

If the roles of the planes π1 and π2 are reversed, so that π2

becomes the domain plane and π1 becomes the codomain plane,

then we obtain the inverse function p−1 which maps points P ′

in π2 back to the corresponding points P in π1 . Clearly, p
−1 is

a parallel projection of π2 onto π1 .

Each choice of location for the domain plane π1 , and the

codomain plane π2 . and each choice of direction for the rays of

light, yields a parallel projection. The only constraint is that

the rays of light must not be parallel to either plane.

If the planes π1 and π2 are parallel to each other, then any

parallel projection p from π1 onto π2 is an isometry, since the

distance between any two points is unaltered.
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On the other hand, if the planes are not parallel to each other,

then some distances are changed under the projection, and so

the parallel projection is not an isometry; notice, however, that

distances along the line of intersection of the planes π1 and π2

do remain unchanged by the parallel projection.

Although distances are not always preserved by a parallel pro-

jection, there are some basic properties that are preserved;

three of these are listed below. As you will see, these are the

same as the basic affine properties that we mentioned at the

end of Subsection 2.2.1.
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Basic Properties of Parallel Projections

Parallel projections:

1. map straight lines to straight lines;

2. map parallel straight lines to parallel straight lines:

3. preserve ratios of lengths along a given straight line.

Later, we will show that each basic affine property follows

directly from the corresponding property for parallel projec-

tions. In anticipation of this, we first show that the properties

hold for parallel projections.

Property 1 A parallel projection maps straight lines to

straight lines.

Proof: Let ℓ be a line in the plane π1 , and let p be a parallel

projection mapping π1 onto the plane π2 . Now consider all the

rays associated with p that pass through ℓ. Since these rays

are parallel, they must fill a plane. Call this plane π.

The image of ℓ under p consists of those points where the

rays that pass through ℓ meet π2 . But these points are simply
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the points of intersection of π with π2 . Since any two intersect-

ing planes in R3 meet in a line, it follows that the image of ℓ

under p is a straight line. □

Property 2 A parallel projection maps parallel straight

lines to parallel straight lines.

Proof: Let ℓ1 and m1 be parallel lines in the plane π1 , and let

p be a parallel projection mapping π1 onto the plane π2 . Let

ℓ2 and m2 be the lines in π2 that are the images under p of ℓ1

and m1 .

If ℓ2 and m2 are not parallel, they meet at some point, P2

say. Let P1 be the point of π1 which maps to P2 . Then P1

must lie on both ℓ1 and m1 . Since ℓ1 and m1 are parallel, no

such point of intersection can exist, which is a contradiction.

It follows that ℓ2 and m2 must indeed be parallel. □

Property 3 A parallel projection preserves ratios of

lengths along a given straight line.
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Proof: Let A,B,C be three points on a line in the plane π1 ,

and let p be a parallel projection mapping π1 onto the plane

π2 . Let P,Q,R be the points in π2 that are the images under

p of A,B,C. We know from Property 1 that P , Q,R lie on a

line; we have to show that the ratio AB : AC is equal to the

ratio PQ : PR If the planes π1 and π2 are parallel, then the

parallel projection p is an isometry, and so the ratios AB : AC

and PQ : PR are equal, as required.

On the other hand, if π1 and π2 are not parallel, then we can
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construct a plane π through the point P which is parallel to π1 ,

as shown in the margin. This plane intersects the ray through

B and Q at some point B′, and the ray through C and R at

some point C ′. So in this case the ratios AB : AC and PB′ :

PC ′ are equal. Now consider △PC ′R. The lines B′Q and C ′R

are parallel, since they are rays from the parallel projection.

Hence B′Q meets the sides PR and PC ′ in equal ratios. Thus

PQ : PR = PB′ : PC ′. It follows that PQ : PR = AB : AC,

as required. □

Notice, in particular, that if a point is the midpoint of a

line segment, then under a parallel projection the image of the

point is the midpoint of the image of the line segment.

In Subsection 2.2.3 you will see why the basic properties of

affine transformations and of parallel projections are the same,

and you will meet some further properties of each.

2.2.3 Affine Geometry

In this subsection we explore further the ideas of affine ge-

ometry and of parallel projection in order to prove two at-

tractive and unexpected results about ellipses. Also, we exam-

ine the relationship between affine transformations and parallel

projections.
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Two Results about Ellipses

First, starting with any chord ℓ of an ellipse, draw all the

chords parallel to ℓ and construct their midpoints. We claim

that these midpoints lie on a chord through the centre of the

ellipse - that is, on a diameter of the ellipse.

Theorem 2. (Midpoint Theorem) Let ℓ be a chord of

an ellipse. Then the midpoints of the chords parallel to ℓ

lie on a diameter of the ellipse.

Next, start with any diameter ℓ of an ellipse and construct a sec-

ond diameter m by following the construction used in Theorem

2, as shown below. Then repeat the construction starting this

time with the diameter m; this might reasonably be expected

to give us a third diameter of the ellipse - but, surprisingly, it

gives us the diameter ℓ with which we started.
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Theorem 3. (Conjugate Diameters Theorem) Let ℓ

be a diameter of an ellipse. Then there is another diameter

m of the ellipse such that:

(a) the midpoints of all chords parallel to ℓ lie on m;

(b) the midpoints of all chords parallel to m lie on ℓ.

Proofs for the Special Case of a Circle

We now investigate these theorems for the special case when

the ellipse is a circle. To prove the Midpoint Theorem in this

case, start with a chord ℓ. If necessary, rotate the circle to

ensure that ℓ is horizontal. It is then sufficient to prove that

every horizontal chord is bisected by the vertical diameter, m.

To do this note that the circle is symmetrical about m; so,

reflection in m maps that part of every horizontal chord to

the left of m exactly onto the part to the right of m. Since

reflection preserves length, these two parts must be the same

length; in other words, m bisects each horizontal chord, as

required. What about the Conjugate Diameters Theorem for

the special case of the circle?
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Start with the horizontal diameter ℓ, and carry out the con-

struction of another diameter as in Theorem 2; this yields the

vertical diameter m. If we then start with the vertical diame-

ter m and repeat the construction, we obtain ℓ, the horizontal

diameter of the circle. So Theorem 3 certainly holds when the

ellipse is a circle.

Generalizing the Proof

We now investigate how the proofs of Theorems 2 and 3 for

the circle can be turned into proofs for any kind of ellipse. The

crucial fact is as follows.

Theorem 4. Given any ellipse, there is a parallel projec-

tion which maps the ellipse onto a circle.

A suitable parallel projection is illustrated below. Here the

plane π1 (initially parallel to π2 ) has been tilted about the

minor axis of the ellipse. Under the projection distances which

are parallel to the minor axis remain unchanged, but distances

parallel to the major axis are scaled by a factor which depends

on. the ’angle of tilt’. By choosing just the right amount of
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tilt we can ensure that the image of the major axis is equal in

length to the image of the minor axis, thereby ensuring that

the image of the ellipse is a circle.

Both Theorems 2 and 3 may now be proved using the fol-

lowing technique. First, map the given ellipse onto a circle,

using a suitable parallel projection p. Since we have seen that

the theorems hold in the case of the circle, we then map the

circle back to the ellipse, using the inverse parallel projection

p−1. Now collinearity and parallelism are preserved under a

parallel projection, as is the property of being the midpoint of

a line segment, so the above two theorems, which hold for a

circle, must hold also for the ellipse.

Notice that certain properties of figures, such as length and

angle, are not preserved under a parallel projection. This is
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one difference between Euclidean geometry and affine geome-

try. The difference arises because the group of affine transfor-

mations is larger than the group of Euclidean transformations.

In general, the larger the group that is used to define a geom-

etry, the fewer properties the geometry has.

Affine Transformations and Parallel Projections

Earlier we mentioned that a parallel projection is a special

type of affine transformation. We now show why this is indeed

the case.

First, consider a parallel projection p of a plane π1 onto a

plane π2 . For the moment, suppose that the planes are aligned

so that the origin in π1 is mapped to the origin in π2 . Since

ratios of lengths are preserved along a straight line, we must

have, for any vector v ∈ R2 and any λ ∈ R,

p(λv) = λp(v) (1)

Next, let v and w be two position vectors in π1 . Their sum,

v + w, is found from the Parallelogram Law for addition of

vectors, as shown in the diagram below. The images under p

in π2 are p(v) and p(w), and the sum of these two vectors is

p(v) + p(w).
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But a parallel projection maps parallel lines onto paral-

lel lines, so it must map parallelograms onto parallelograms.

Hence it must map the parallelogram in π1 onto the parallelo-

gram in π2 , and, in particular, it must map v+w to p(v)+p(w).

We may write this as

p(v +w) = p(v) + p(w) (2)

It follows from equations (1) and (2) that p must be a lin-

ear transformation of R2 onto itself. Hence there exists some

matrix A such that for each v ∈ R2

p(v) = Av. (3)

Since the linear transformation p is invertible, it follows that

A is invertible. Now suppose that the parallel projection maps

the origin in π1 to some point B with position vector b in π2 ,

as shown below. If we temporarily construct a new set of axes

in π2 that are parallel to the original axes, but which intersect
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at the point B, then with respect to these new axes p(v) = Av

for some invertible matrix A, as before. To express p(v) with

respect to the original axes, we simply add on the vector b to

obtain

p(v) = Av + b (4)

for some invertible 2× 2 matrix A.

It follows from equation (4) that p must be an affine trans-

formation.

Theorem 5. Each parallel projection is an affine transfor-

mation.

The converse is false, for it is not true that every affine trans-

formation can be represented as a parallel projection.

For example, consider the so-called ’doubling map’ of R2 to

itself given by

t(v) = 2v
(
v ∈ R2

)
(5)
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This is an affine transformation, since it can be written in the

form t(x) =Ax+b withA = 2I and b = 0. However, a parallel

projection is either between two parallel planes, in which case

all lengths are unchanged, or between two intersecting planes,

in which case distances along the line of intersection are un-

changed. The doubling map has neither of these properties

and so is not a parallel projection.

Observation An affine transformation is not necessarily a par-

alle projection.

Although the doubling map is not a parallel projection, it

is possible to double lengths in R2 by following one parallel

projection by another: the first doubles all horizontal lengths,

and the second doubles all vertical lengths. Thus the doubling

map (5) can be represented as the composition of two parallel

projections.

We end this subsection by showing that every affine trans-

formation can be expressed as a composition of two parallel

projections. Recall that any affine transformation t : R2 → R2

has the form

t(x) = Ax+ b
(
x ∈ R2

)
(6)

where A is an invertible 2 × 2 matrix. Now, t is not a linear

transformation unless b = 0, but we can use methods similar

to those for linear transformations to determine A and b.

First, it follows from equation (6) that t(0) = b; so b is the

image of the origin under t. If we let e and f be the coordinates
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of t(0), then we can write

A =

(
a b

c d

)
and b =

(
e

f

)

where a, b, c, d are real numbers that have yet to be found. It

follows from equation (6) that the images under t of the points

(1, 0) and (0, 1) are given by(
a b

c d

)(
1

0

)
+

(
e

f

)
=

(
a

c

)
+

(
e

f

)

and (
a b

c d

)(
0

1

)
+

(
e

f

)
=

(
b

d

)
+

(
e

f

)
.

So if, in addition to t(0) = (e, f), we know the points onto

which (1, 0) and (0, 1) are mapped by t, then we can determine

the values of a, b, c and d. Indeed, we have

(a, c) = t(1, 0)− (e, f) and (b, d) = t(0, 1)− (e, f)

It follows that an affine transformation is uniquely determined

by its effect on the three non-collinear points (0, 0), (1, 0) and

(0, 1). We shall return to this method of determining affine

transformations in Section 2.3.

So suppose that a given affine transformation t maps the

points (0, 0), (1, 0) and (0, 1) to three non-collinear points P,Q
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and R, respectively. In order to express t as the composition

of two parallel projections p1 and p2 , we need to define p1 and

p2 in such a way that p2 ◦ p1 has the same effect as t on (0, 0),

(1, 0) and (0, 1). To do this, we first define p1 so that it maps

(0, 0) to P, (1, 0) to Q, and (0, 1) to some point X, say, and

then define p2 so that it maps X to R while leaving P and Q

fixed.

To construct p1 we embed its domain plane π1 , and its

codomain plane π, into R3 so that the point (0, 0) in π1 co-

incides with the point P in π, as shown below. It does not

matter how this is done, provided that (1, 0) does not lie in π.

We then define p1 by the family of rays that are parallel to the

ray through the point (1, 0) in π1 and the point Q in π. When

defined in this way, p1 maps (0, 0) to P, (1, 0) to Q, and (0, 1)

to some point X, as required.
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To construct p2 we embed its domain plane π, and its codomain

plane π2 , into R3 so that the points P and Q in π coincide with

the points P and Q in π2 , as shown below. Again it does not

matter how this is done, provided that X does not lie in π2 .

We then define p2 by the family of rays that are parallel to the

ray through the point X in π and the point R in π2 . Then p2

leaves P and Q fixed and maps X to R.

SDE
Typewritten text
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Overall, the composite p2 ◦ p1 of the two parallel projections

maps (0, 0), (1, 0) and (0, 1) to P,Q and R, respectively. Now

p1 and p2 are affine transformations, so p2 ◦ p1 is also an affine

transformation. Furthermore, p2 ◦ p1 maps (0, 0), (1, 0) and

(0, 1) to the same points as does t. Since such affine trans-

formations are unique, it follows that t = p2 ◦ p1 . We have

therefore demonstrated the following result.

Theorem 6. An affine transformation can be expressed as

the composite of two parallel projections.

An important consequence of this theorem is that all prop-

erties of figures that are unchanged by parallel projections must

also be unchanged by affine transformations. In particular, the

three properties of parallel projections that we met in Subsec-
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tion 2.2.2 must, in fact, be affine properties.

2.3 Properties of Affine Transforma-

tions

In the previous section you saw how parallel projections

can be used to explore affine geometry from a visual point of

view. In this section we explore some of the same ideas from

an algebraic point of view.

2.3.1 Images of Sets Under Affine Transfor-

mations

We begin by describing how to find the image of a line

under an affine transformation. To do this, recall that an affine

transformation is a mapping t : R2 → R2 given by a formula of

the form

t(x) = Ax+ b (1)

where A is an invertible 2 × 2 matrix. The set of such trans-

formations forms a group, in which the transformation inverse

to t is given by

t−1(x) = A−1x−A−1b (2)

151



When equations (1) and (2) are used to find images under

t, it is easy to confuse points in the domain plane with points

in the codomain plane, as both planes are copies of R2. To

avoid such confusion, we often reserve the symbol x and the

coordinates (x, y) for points in the domain of t, and use the

symbol x′ and the coordinates (x′, y′) to denote the image of x

under t. With this notation, we may rewrite equations (1) and

(2) in the form

x′ = Ax+ b (3)

x = A−1x′ −A−1b (4)

The next example illustrates how these equations can be used

to find the image of a line under an affine transformation.

Example 1. Determine the image of the line y = 2x under the

affine transformation

t(x) =

(
4 1

2 1

)
x+

(
2

−1

) (
x ∈ R2

)
(5)

Solution: Let (x, y) be an arbitrary point on the line y = 2x,

and let (x′, y′) be the image of (x, y) under t. Then(
x′

y′

)
=

(
4 1

2 1

)(
x

y

)
+

(
2

−1

)
.

Next we use equation (4) to express (x, y) in terms of (x′, y′).
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We have(
4 1

2 1

)−1

=

(
1
2

−1
2

−1 2

)
and

(
1
2

−1
2

−1 2

)(
2

−1

)
=

(
3
2

−4

)

so (
x

y

)
=

(
1
2

−1
2

−1 2

)(
x′

y′

)
+

(
−3

2

4

)
.

It follows that under the inverse mapping t−1 we have

x =
1

2
x′ − 1

2
y′ − 3

2
and y = −x′ + 2y′ + 4

Since x and y are related by the equation y = 2x, it follows

that x′ and y′ are related by the equation

−x′ + 2y′ + 4 = 2

(
1

2
x′ − 1

2
y′ − 3

2

)
which simplifies to

2x′ − 3y′ = 7

Dropping the dashes, we see that the image of the line y = 2x

under t is the line

2x− 3y = 7

□

Problem 1. Determine the image of the line 3x − y + 1 = 0
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under the affine transformation

t(x) =

(
1
2

−1
2

−1 2

)
x+

(
−3

2

4

) (
x ∈ R2

)
.

Solution: Let (x, y) be an arbitrary point on the line 3x−
y + 1 = 0, and let (x′, y′) be the image of (x, y) under t. Then(

x′

y′

)
=

(
1
2

−1
2

−1 2

)(
x

y

)
+

(
−3

2

4

)
.

Since the inverse of the inverse of any invertible transformation

is the original transformation, it follows from Example 1 that

under t−1, we have(
x

y

)
=

(
4 1

2 1

)(
x′

y′

)
+

(
2

−1

)
.

Thus

x = 4x′ + y′ + 2 and y = 2x′ + y′ − 1.

Hence the image under t of the line 3x−y+ 1 = 0 has equation

3 (4x′ + y′ + 2)− (2x′ + y′ − 1) + 1 = 0.

Dropping the dashes and simplifying, we obtain

5x+ y + 4 = 0
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□

Problem 2. Determine the image of the circle x2 + y2 = 1

under the affine transformation

t(x) =

(
1
2

−1
2

−1 2

)
x+

(
−3

2

4

) (
x ∈ R2

)
.

Solution: The argument here is similar to that of Problem 1.

For, if (x, y) is an arbitrary point on the circle x2 + y2 = 1 and

(x′, y′) is the image of (x, y) under t, then under t−1 we have(
x

y

)
=

(
4 1

2 1

)(
x′

y′

)
+

(
2

−1

)
.

Thus

x = 4x′ + y′ + 2 and y = 2x′ + y′ − 1.

Hence the image under t of the circle x2 + y2 = I has equation

(4x′ + y′ + 2)
2
+ (2x′ + y′ − 1)

2
= 1

Dropping the dashes and simplifying. we obtain

10x2 + 6xy + y2 + 6x+ y + 2 = 0

□

The same technique can be used to find the images of other

types of figures, such as other conics. You will meet some
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examples of this in Section 2.5.

2.3.2 The Fundamental Theorem of Affine

Geometry

The algebraic approach can also be used to investigate

whether there is an affine transformation which maps one given

figure onto another. Recall that if there is such a transforma-

tion, then the two figures are said to be affinecongruent. This

concept of congruence is important because, as we explained

in Section 2.1, figures that are affine-congruent to each other

share the same affine properties.

In this subsection we prove the remarkable result that all

triangles are affinecongruent and therefore share the same affine

properties. In fact, since a triangle is completely determined

by its three vertices, the congruence of triangles follows from

the so-called Fundamental Theorem of Affine Geometry which

states that any three non-collinear points can be mapped to any

other three non-collinear points by an affine transformation.

First, recall that in Subsection 2.2.3 we described how the

points (0, 0), (1, 0) and (0, 1) in R2 can be mapped to any three

non-collinear points P,Q and R by an affine transformation.

This transformation is unique in the sense that it is completely

determined by the choice of P,Q and R. The following exam-

ple should remind you of how such transformations are con-
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structed.

Example 2. Determine the affine transformation which maps

the points (0, 0), (1, 0) and (0, 1) to the points (3, 2), (5, 8) and

(7, 3), respectively.

Solution: Let t be the affine transformation given by

t :

(
x

y

)
7→

(
a b

c d

)(
x

y

)
+

(
e

f

)
. (6)

Since t(0, 0) = (3, 2), it follows from (6) that e = 3 and f = 2.

Next, t(1, 0) = (5, 8), so it follows from (6) that(
5

8

)
=

(
a b

c d

)(
1

0

)
+

(
3

2

)
=

(
a

c

)
+

(
3

2

)
.

The first column of the matrix for t is therefore(
a

c

)
=

(
5

8

)
−

(
3

2

)
=

(
2

6

)
.

Finally, t(0, 1) = (7, 3), so that(
7

3

)
=

(
a b

c d

)(
0

1

)
+

(
3

2

)
=

(
b

d

)
+

(
3

2

)
.

The second column of the matrix for t is therefore(
b

d

)
=

(
7

3

)
−

(
3

2

)
=

(
4

1

)
.
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Hence the desired affine transformation is given by

t :

(
x

y

)
7→

(
2 4

6 1

)(
x

y

)
+

(
3

2

)
.

□ In general, if we want to find an affine transformation t of

the form

t :

(
x

y

)
7→

(
a b

c d

)(
x

y

)
+

(
e

f

)
(7)

which maps (0, 0) to p, (1, 0) to q and (0, 1) to r, then we must

choose a, b, c, d, e and f so that

p = t(0, 0) = (e, f), so (e, f) = p;

q = t(1, 0) = (a, c) + (e, f), so (a, c) = q− p;

r = t(0, 1) = (b, d) + (e, f), so (b, d) = r− p

Notice that any three points p,q and r uniquely determine

a transformation t of the form (7), but t is affine only if the

matrix

A =

(
a b

c d

)
is invertible. Since the columns of A correspond to the vectors

q−p and r−p. it follows thatA is invertible only if the vectors

q − p and r − p are linearly independent. That is, provided

that p,q and r are not collinear.

So if p,q and r are not collinear, then we can use the follow-
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ing strategy to find an affine transformation which maps (0, 0)

to p, (1, 0) to q and (0, 1) to r.

Strategy. To determine the unique affine transformation

t(x) = Ax + b which maps (0, 0), (1, 0) and (0, 1) to the

three non-collinear points p,q and r, respectively:

1. take b = p :

2. take A to be the matrix with columns given by q − p

and r− p.

Problem 3. Use the strategy to determine the affine trans-

formation which maps the points (0, 0), (1, 0) and (0, 1) to the

points (2, 3), (1, 6) and (3,−1), respectively.

Solution: First, we take b =

(
2

3

)
. Next, we construct the

matrix A whose first column is(
1

6

)
−

(
2

3

)
=

(
−1

3

)
,

and whose second column is(
3

−1

)
−

(
2

3

)
=

(
1

−4

)

thus

A =

(
−1 1

3 −4

)
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The required affine transformation t is therefore

t(x) =

(
−1 1

3 −4

)
x+

(
2

3

) (
x ∈ R2

)
.

□

Problem 4. Use the strategy to determine the affine trans-

formation which maps the points (0, 0), (1, 0) and (0, 1) to the

points (1,−2), (2, 1) and (−3, 5), respectively.

Solution: First, we take b =

(
1

−2

)
. Next, we construct

the matrix A whose first column is(
2

1

)
−

(
1

−2

)
=

(
1

3

)
,

and whose second column is(
−3

5

)
−

(
1

−2

)
=

(
−4

7

)
;

thus

A =

(
1 −4

3 7

)
.

The required affine transformation t is therefore

t(x) =

(
1 −4

3 7

)
x+

(
1

−2

) (
x ∈ R2

)
.
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□

Notice that the inverse of the transformation in Problem 3 is

an affine transformation which maps the points (2, 3), (1, 6) and

(3,−1) to the points (0, 0), (1, 0) and (0, 1), respectively. So if,

after applying this inverse, we apply the affine transformation

in Problem 4 , then the overall effect is that of a composite

affine transformation which sends the points (2, 3), (1, 6) and

(3,−1) to the points (1,−2), (2, 1) and (−3, 5), respectively.

In a similar way, we can find an affine transformation which

sends any three non-collinear points to any other three non-

collinear points.

Theorem 1. (Fundamental Theorem of Affine Ge-

ometry) Let p,q, r and p′,q′, r′ be two sets of three non-

collinear points in R2. Then

(a) there is an affine transformation t which maps

p,q and r to p′,q′ and r′, respectively:

(b) the affine transformation t is unique.

Proof:

(a) Let t1 be the affine transformation which maps

(0, 0), (1, 0) and (0, 1)t the points p,q and r, respectively, and

let t2 be the affine transformation which maps (0, 0), (1, 0) and

(0, 1) to the points p′,q′ and r′, respectively Then the compos-

ite t = t2 ◦ t−1
1

is an affine transformation, and it maps p q and

r to p′,q′ and r′, respectively.
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(b) Suppose that t and s are both affine transformations

which map p, q and r to p′,q′ and r′, respectively, and let

t1 be the affine transformation defined in part (a). Then the

composites t◦t1 and s◦t1 are both affine transformations which

map (0, 0), (1, 0) and (0, 1) to p′,q′ and r′, respectively. Since

an affine transformation is uniquely determined by its effect on

the points (0, 0), (1, 0) and (0, 1), it follows that t ◦ t1 = s ◦ t1

If we then compose both t ◦ t1 and s ◦ t1 on the right with

t−1
1
, it follows that t = s. Thus the mapping t constructed in

part (a) is unique. □

Now suppose that we are given two arbitrary triangles

△ABC and △DEF . By the Fundamental Theorem there is

an affine transformation which maps the vertices A,B,C to the

vertices D,E, F , respectively. Since this transformation maps

straight lines to straight lines, it must map the sides of △ABC

to the sides of ∆DEF , so we have the following important

corollary. This will be used extensively in Section 2.4.

Corollary. All triangles are affine-congruent.
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In order to find the affine transformation which maps one tri-

angle, vertex to vertex, onto another triangle, we follow the

strategy used in part (a) of the proof of the Fundamental The-

orem.

Strategy. To determine the affine transformation t which

maps three noncollinear points p,q and r to another three

non-collinear points p′,q′ and r′, respectively:

1. determine the affine transformation t1 which maps

(0, 0), (1, 0) and (0, 1) to the points p,q and r, re-

spectively;

2. determine the affine transformation t2 which maps

(0, 0), (1, 0) and (0, 1) to the points p′,q′ and r′, re-

spectively;

3. calculate the composite t = t2 ◦ t−1
1
.

Example 3. Determine the affine transformation which maps

the points (2, 3), (1, 6) and (3,−1) to the points (1,−2), (2, 1)

and (−3, 5), respectively.

Solution: You have already seen in Problem 3 that the affine

transformation t1 which maps the points (0, 0), (1, 0) and (0, 1)

to the points (2, 3), (1, 6) and ( 3,−1 ), respectively, is given by

t1(x) =

(
−1 1

3 −4

)
x+

(
2

3

)
.
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Also, in Problem 4 you saw that the affine transformation t2

which maps the points (0, 0), (1, 0) and (0, 1) to the points

(1,−2), (2, 1) and (−3, 5), respectively, is given by

t2(x) =

(
1 −4

3 7

)
x+

(
1

−2

)
.

Following the strategy, we need to find the inverse of t1 . We

have (
−1 1

3 −4

)−1

=

(
−4 −1

−3 −1

)
and (

−4 −1

−3 −1

)(
2

3

)
=

(
−11

−9

)
,

so that the inverse of t1 is given by

t−1
1
(x) =

(
−4 −1

−3 −1

)
x+

(
11

9

)
.

Thus the affine transformation which maps the points

(2, 3), (1, 6) and (3,−1) to the points (1,−2), (2, 1) and (−3, 5),
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respectively, is given by

t(x) = t2 ◦ t−1
1
(x)

= t2

((
−4 −1

−3 −1

)
x+

(
11

9

))

=

(
1 −4

3 7

)((
−4 −1

−3 −1

)
x+

(
11

9

))
+

(
1

−2

)

=

((
8 3

−33 −10

)
x +

(
−25

96

))
+

(
1

−2

)

=

(
8 3

−33 −10

)
x+

(
−24

94

)
.

□

Problem 5. Determine the affine transformation which

maps the points (1,−1), (2,−2) and (3,−4) to the points

(8, 13), (3, 4) and (0,−1), respectively.

Solution: First, we find the affine transformation t1 which

maps (0, 0), (1, 0) and (0, 1) to (1,−1), (2,−2) and (3,−4), re-

spectively. This transformation has the form t1(x) = Ax + b,

where b =

(
1

−1

)
and

A =

(
2− 1 3− 1

−2 + 1 −4 + 1

)
=

(
1 2

−1 −3

)
;
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that is,

t1(x) =

(
1 2

−1 −3

)
x+

(
1

−1

)
.

Next, we find the affine transformation t2 which maps

(0, 0), (1, 0) and (0, 1) to (8, 13), (3, 4) and (0,−1), respec-

tively. This transformation has the form t2(x) = Ax + b,

where b =

(
8

13

)
and

A =

(
3− 8 0− 8

4− 13 −1− 13

)
=

(
−5 −8

−9 −14

)
;

that is,

t2(x) =

(
−5 −8

−9 −14

)
x+

(
8

13

)
.

We now require the formula for the inverse transformation t−1
1
.

Since(
1 2

−1 −3

)−1

= −

(
−3 −2

1 1

)
=

(
3 2

−1 −1

)

and (
3 2

−1 −1

)(
1

−1

)
=

(
1

0

)
,

it follows that

t−1
1
(x) =

(
3 2

−1 −1

)
x−

(
1

0

)
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The required affine transformation t is therefore t(x) = t2 o

t−1
1
(x), where t2 o t−1

1
(x) is equal to

t2

((
3 2

−1 −1

)
x−

(
1

0

))
=

(
−5 −8

−9 −14

)((
3 2

−1 −1

)
x−

(
1

0

))
+

(
8

13

)

=

(
−7 −2

−13 −4

)
x−

(
−5

−9

)
+

(
8

13

)

=

(
−7 −2

−13 −4

)
x+

(
13

22

)
.

□

2.3.3 Proofs of the Basic Properties of Affine

Transformations

In Subsection 2.2.2 we used parallel projections to demon-

strate that affine transformations have the following basic prop-

erties: they map straight lines to straight lines, they map par-

allel lines to parallel lines, and they preserve ratios of lengths

along a given straight line. We now give algebraic proofs of

these assertions.

Theorem 2. An affine transformation maps straight lines

to straight lines.

Proof:
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Let ℓ be a line through a point with position vector p, and

let the direction of ℓ be that of some vector a. Then ℓ = {p+

λa : λ ∈ R} Now let t : R2 → R2 be an affine transformation

given by t(x) = Ax + b We can find the image under t of an

arbitrary point p+ λa on ℓ as follows:

t(p+ λa) = A(p+ λa) + b

= (Ap+ b) + λAa

= t(p) + λAa.

So the image of ℓ is the set t(ℓ) = {t(p) + λAa : λ ∈ R} which

is a line through t(p) in the direction of the vector Aa. □

Theorem 3. An affine transformation maps parallel

straight lines to parallel straight lines.

Proof:

168



Let ℓ1 and ℓ2 be parallel lines through the points with posi-

tion vectors p and q, respectively, and let the direction of the

lines be that of the vector a. Then ℓ1 = {p + λa : λ ∈ R}
and ℓ2 = {q+ λa : λ ∈ R}

As in the proof of Theorem 2, the images of ℓ1 and ℓ2 under

the affine transformation t(x) = Ax+ b are the sets

t (ℓ1) = {t(p)+λAa : λ ∈ R} and t (ℓ2) = {t(q)+λAa : λ ∈ R}

These sets are straight lines which pass through the image

points t(p) and t(q), both in the same direction as that of

the vector Aa. Hence the two image lines under t are parallel,

as claimed. □

Rather than prove that affine transformations preserve ra-

tios of lengths along a given straight line, as in Property 3 of

Subsection 2.2.2, we prove the following more general result

illustrated in the margin. The original result follows because

any line is parallel to itself.
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Theorem 4. An affine transformation preserves ratios of

lengths along parallel straight lines.

Proof: We begin by examining what happens to the length of

a line segment under an affine transformation.

Let ℓ be a line through a point with position vector p, and

let the direction of ℓ be that of some unit vector a. Then

ℓ = {p+ λa : λ ∈ R}

As in the proof of Theorem 2, the image of ℓ under the affine

transformation t(x) = Ax+ b is the line

t(ℓ) = {t(p) + λAa : λ ∈ R}

Now consider a segment of ℓ with endpoints p+λ1a and p+λ2a.

Since a is a unit vector, the length of the segment is

∥(p+ λ2a)− (p+ λ1a)∥ = |λ2 − λ1| · ∥a∥ = |λ2 − λ1|

The image of the segment has endpoints t(p) + λ1 Aa and
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t(p) + λ2Aa, so the image of the segment has length

∥(t(p) + λ2Aa)− (t(p) + λ1Aa)∥ = |λ2 − λ1 | · ∥Aa||.

So, in the process of mapping segments along ℓ to segments

along t(ℓ), lengths are stretched by the factor ||Aa||. Since this
factor is the same for all segments which lie along lines parallel

to a, it follows that the ratios of lengths along parallel lines are

unchanged by t. □

2.4 Use of Fundamental Theorem of

Affine Geometry

In this section we explain how the Fundamental Theorem

of Affine Geometry can be used to deduce the fact that the

medians of any triangle are concurrent from the special case

that the medians of an equilateral triangle are concurrent. We

then use similar methods to prove the classical theorems of

Ceva and Menelaus.

2.4.1 The Median Theorem

Let △ABC be an arbitrary triangle in the plane. If you join

the midpoint of each side of the triangle to the opposite vertex

(these lines are called the medians of the triangle), these three
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lines appear to pass through a single point. In fact, no matter

what triangle you choose, you find that its medians meet in a

single point.

Theorem 1. (Median Theorem) The medians of any

triangle are concurrent.

We can get some evidence that this theorem holds in general

by looking first at a special case where a proof of the theorem

is straight-forward - namely, when the triangle is an equilateral

triangle.

To do this, consider an equilateral triangle △ABC, with

medians AP,BQ and CR. Since △ABC has sides of equal

length, it must be symmetric about the line AP. Thus the point

at which BQ meets CR must be symmetrically placed with

respect to this line - that is, it must actually lie on the line

AP . In other words, the lines AP,BQ and CR are concurrent

if the triangle is equilateral.

In order to show that the medians of an arbitrary trian-

gle meet at a point, consider an arbitrary triangle △ABC,

and let P,Q and R be the midpoints of the sides BC,CA and

AB, respectively. Next, choose a particular equilateral triangle

∆A′B′C ′, and let P ′, Q′ and R′ be the midpoints of the sides

B′C ′, C ′A′ and A′B′, respectively.

172



According to the Fundamental Theorem of Affine Geome-

try there is an affine transformation t which maps △ABC onto

∆A′B′C ′. Moreover, since affine transformations preserve ra-

tios of lengths along lines it follows that t maps the mid-points

P,Q and R to the mid-points P ′, Q′ and R′, respectively.

From the above discussion we know that the medians of any

equilateral triangle meet at a point, so in particular we know

that A′P ′, B′Q′ and C ′R′ meet at some point X ′, say, as shown

on the right below.

The trick now is to observe that t has an inverse t−1 which

is also an affine transformation. This inverse maps the medians

A′P ′, B′Q′ and C ′R′ back to the medians AP,BQ and CR of

the original triangle △ABC. Since X ′ lies on all three of the

lines A′P ′, B′Q′ and C ′R′ it follows that t−1 maps X ′ to some

173



point X which lies on all three of the lines AP,BQ and CR.

In other words, the medians of △ABC are concurrent.

Since △ABC is an arbitrary triangle we have proved the

Median Theorem. The essence of the above proof is the fact

that all triangles are affinecongruent. That powerful result en-

ables us to prove theorems concerning the affine properties of

triangles (such as collinearity, lines being parallel, and ratios of

lengths along a given line) following a standard pattern. First,

we choose a particular type of triangle for which it is easy to

prove the result. Then, by asserting the existence of an affine

transformation from that triangle to an arbitrary triangle, we

deduce that the result holds for all triangles.

This is the approach we shall use to prove the theorems of

Ceva and Menelaus later in the section.

2.4.2 Ceva’s Theorem

We now prove the following theorem due to Ceva.

Theorem 2. (Ceva’s Theorem) Let △ABC be a trian-

gle, and let X be a point which does not lie on any of its

(extended) sides. If AX meets BC at P,BX meets CA at

Q and CX meets BA at R, then

AR

RB
· BP

PC
· CQ

QA
= 1
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Proof: According to the Fundamental Theorem of Affine Ge-

ometry there is an affine transformation t which maps the

points A,B,C to the points A′ = (0, 1), B′ = (0, 0), C ′ = (1, 0),

respectively. This transformation maps the triangle △ABC

onto the right-angled triangle ∆A′B′C ′, and it maps the point

X to some point X ′ = (u, v).

Using coordinate geometry we can calculate the equations

of the lines A′X ′, B′X ′, C ′X ′ and hence find the coordinates

of the point P ′ where A′X ′ meets B′C ′, of the point Q′ where

B′X ′ meets A′C ′, and of the point R′ where C ′X ′ meets A′B′.

Starting with the point P ′, we note that the line B′C ′ has equa-

tion y = 0. Also, the line A′X ′ has slope 1−v
0−u

, so its equation is

y− 1 = 1−v
0−u

(x− 0). Hence, at the point P ′ where the two lines
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meet, we must have y = 0 and y − 1 = 1−v
0−u

(x− 0), so

P ′ =

(
u

1− v
, 0

)
.

Similarly, at the point R′ we have x = 0, and y−0 = 0−v
1−u

(x−1),

so

R′ =

(
0,

v

1− u

)
.

Finally, at Q′ we have x + y = 1 and y = v
u
x, so x = u

u+v
and

y = v
u+v

. Hence

Q′ =

(
u

u+ v
,

v

u+ v

)
Thus, using the coordinate formulas for calculating ratios we

obtain

A′R′

R′B′ =
y
R′ − y

A′

y
B′ − y

R′

=
v

1−u
− 1

0− v
1−u

=
u+ v − 1

−v

B′P ′

P ′C ′ =
x

P ′ − x
B′

x
C′ − x

P ′

=
u

1−v
− 0

1− u
1−v

=
u

1− u− v

and
C ′Q′

Q′A′ =
y
Q′ − y

C′

y
A′ − y

Q′

=
v

u+v
− 0

1− v
U+v

=
v

u

Hence
A′R′

R′B′ ·
B′P ′

P ′C ′ ·
C ′Q′

Q′A′ = 1

Since t−1 is an affine transformation, it preserves ratios along a

line. It must therefore map P ′, Q′, R′ back to the points P,Q,R
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in such a way that

AR

RB
· BP

PC
· CQ

QA
= 1

as required. □

The next example illustrates how we can use Ceva’s Theo-

rem to calculate certain unknown distances along the sides of

a triangle. For the method to work correctly, it is important

to remember that all the ratios in Ceva’s Theorem are signed

ratios. Thus, if X lies inside the triangle, as in part (a) of the

example, then all the ratios are positive. But if X lies out-

side the triangle, as in part (b), then two of the ratios will be

negative.

Example 1. (a) In the figure on the left below, AR = 1, RB =

2, BP = 3, CQ = 2 and QA = 2. Calculate the distance PC.

(b) For the figure on the right, AR = 1, AB = 3, PC = 1, CQ =

2 and QA = 2. Calculate the distance BC.
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Solution: (a) By Ceva’s Theorem, we have

AR

RB
· BP

PC
· CQ

QA
= 1

so,
1

2
· 3

PC
· 2
2
= 1

It follows that PC = 3
2
(b) By Ceva’s Theorem, we have

AR

RB
· BP

PC
· CQ

QA
= 1

so,

−1

4
·
(
−BC + 1

1

)
· 2
2
= 1

It follows that BC = 3. □

Problem 1. (a) Determine the ratio BP
PC

in the left diagram

below, given that

AR

RB
=

AQ

QC
=

3

2

(b) Determine the ratio CQ
QA

in the middle diagram below,

given that

AR

RB
=

1

2
and

BP

PC
= −2

7

(c) Determine the ratio AR
RB

in the right diagram below, given

that
BP

PC
=

5

7
and

CQ

QA
= −7
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Solution:

(a) By Ceva’s Theorem, we have

AR

RB
· BP

PC
· CQ

QA
= 1.

First, AR
RB

= 3
2
. Next, AQ

QC
= 3

2
and so CQ

QA
= 2

3
.

It follows that
3

2
· BP

PC
· 2
3
= 1

so BP
PC

= 1.

(b) By Ceva’s Theorem, we have

AR

RB
· BP

PC
· CQ

QA
= 1

Since AR
RB

= 1
2
and BP

PC
= −2

7
, it follows that

1

2
·
(
−2

7

)
· CQ

QA
= 1

so CQ
QA

= −7
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(c) By Ceva’s Theorem, we have

AR

RB
· BP

PC
· CQ

QA
= 1

We are given that BP
PC

= 5
7
and CQ

QA
= −7, so

AR

RB
· 5
7
· (−7) = 1

Hence AR
RB

= −1
5

□

Ceva’s Theorem has the following converse, which can be

regarded as a generalization of the Median Theorem to config-

urations where P,Q,R are not all midpoints of sides.

Theorem 3. (Converse to Ceva’s Theorem) Let P,Q

and R be points, other than vertices, on the (possibly ex-

tended) sides BC,CA and AB of a triangle △ABC, such

that
AR

RB
· BP

PC
· CQ

QA
= 1 (1)

Then the lines AP,BQ and CR are concurrent.

Proof: Let the lines BQ and CR intersect at a point X, and

let the line AX meet BC at some point P ′. It is sufficient to

prove that P = P ′. It follows from Ceva’s Theorem that

AR

RB
· BP ′

P ′C
· CQ

QA
= 1 (2)
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Hence, from equations (1) and (2), we have

BP

PC
=

BP

P ′C

so that P and P ′ must indeed be the same point. □

Example 2. The tri-

angle △ABC has vertices A(1, 3), B(−1, 0) and C(4, 0), and

the points P (0, 0), Q
(
8
3
, 4
3

)
and R

(
−2

3
, 1
2

)
lie on BC,CA and

AB, respectively.

(a) Determine the ratios in which P,Q and R divide the sides

of the triangle.

(b) Determine whether the lines AP,BQ and CR are concur-

rent.

Solution: (a) Using the coordinate formulas for calculating

ratios, we obtain

AR

RB
=

x
R
− x

A

x
B
− x

R

=
−2

3
− 1

−1 + 2
3

= 5,
BP

PC
=

x
P
− x

B

x
C
− x

P

=
0 + 1

4− 0
=

1

4

CQ

QA
=

x
Q
− x

C

x
A
− x

Q

=
8
3
− 4

1− 8
3

=
4

5

so that P divides BC in the ratio 1 : 4, Q divides CA in the

ratio 4 : 5 and R divides AB in the ratio 5 : 1.

(b) It follows from (3) that the product

AR

RB
· BP

PC
· CQ

QA
= 5 · 1

4
· 4
5
= 1
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so by the converse to Ceva’s Theorem the lines AP,BQ and

CR must be concurrent. □

Problem 2. The triangle

△ABC has vertices A(−1, 1), B(2,−1) and C(3, 2), and the

points P
(
8
3
, 1
)
, Q
(
2, 7

4

)
and R

(
4
3
,−1

5

)
lie on BC,CA and AB,

respectively.

(a) Determine the ratios in which P,Q and R divide the

sides of the triangle.

(b) Determine whether the lines AP,BQ and CR are con-

current.

Solution:

(a) Here we use the formula for calculating ratios given at the

beginning of Appendix 2 , just above the Section Formula.

This gives

BP

PC
=

x
P
− x

B

x
C
− x

P

=
8
3
− 2

3− 8
3

= 2

CQ

QA
=

x
Q
− x

C

x
A
− x

Q

=
2− 3

−1− 2
=

1

3

AR

RB
=

x
R
− x

A

x
B
− x

R

=
4
5
+ 1

2− 4
5

=
3

2

Thus

P divides BC in the ratio 2 : 1,
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Q divides CA in the ratio 1 : 3,

R divides AB in the ratio 3 : 2.

(b) It follows from part (a) that

AR

RB
· BP

PC
· CQ

QA
=

3

2
· 2 · 1

3
= 1

Thus by the converse to Ceva’s Theorem, the lines

AP,BQ and CR are concurrent.

□

2.4.3 Menelaus’ Theorem

Ceva’s theorem is concerned with lines through the vertices

of a triangle that meet at a point. We now use the Fundamental

Theorem of Affine Geometry to prove an analogous theorem

due to Menelaus which is concerned with points on the sides of

a triangle that are collinear.

Theorem 4. ( Menelaus’ Theorem) Let △ABC be a

triangle, and let ℓ be a line that crosses the sides BC,CA,

AB at three distinct points P,Q,R, respectively. Then

AR

RB
· BP

PC
· CQ

QA
= −1

Proof: According to the Fundamental Theorem of Affine Ge-

ometry there is an affine transformation t which maps the
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points A,B,C to the points A′(0, 1), B′(0, 0), C ′(1, 0), respec-

tively. This transformation maps the triangle △ABC onto the

right-angled triangle ∆A′B′C ′, and it maps the line ℓ to some

line ℓ′. Let the equation of ℓ′ be y = mx+ c.

We now calculate the coordinates of the points P ′, Q′ and

R′ where ℓ′ meets the sides B′C ′, C ′A′ and A′B′, respectively.

At P ′ we have y = 0 and y = mx + c. This implies that

x = − c
m
, and hence P ′ =

(
− c

m
, 0
)
. At R′ we have x = 0 and

y = mx + c. This implies that y = c, and hence R′ = (0, c).

At Q′ we have x + y = 1 and y = mx + c. This implies that

1−x = mx+ c so that x = 1−c
m+1

; also y = m(1− y)+ c, so that

y = m+c
m+1

; and hence Q′ =
(

1−c
m+1

, m+c
m+1

)
.

Using the coordinate formulas for calculating ratios we ob-

tain
A′R′

R′B′ =
y
R′ − y

A′

y
B′ − y

R′

=
c− 1

0− c
=

c− 1

−c
,

B′P ′

P ′C ′ =
x

P ′ − x
B′

x
C′ − x

P ′

=
− c

m
− 0

1 + c
m

=
−c

m+ c
,
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and
C ′Q′

Q′A′ =
x

Q′ − x
C′

x
A′ − x

Q′

=
1−c
m+1

− 1

0− 1−c
m+1

=
−(m+ c)

c− 1

Hence,
A′R′

R′B′ ·
B′P ′

P ′C ′ ·
C ′Q′

Q′A′ = −1

Since t−1 is an affine transformation, it preserves ratios along a

line. It must therefore map P ′, Q′, R′ back to the points P,Q,R

in such a way that

AR

RB
· BP

PC
· CQ

QA
= −1

as required. □

Remark

As for Ceva’s Theorem, it is important to remember that

all the ratios in Menelaus’ Theorem are signed ratios. In fact if

ℓ passes through the interior of the triangle, then precisely one

of the ratios is negative; otherwise all the ratios are negative.

Example 3. (a) In the figure on the left below: AR =

1, RB = 2, BC = 2, CQ = 1 and QA = 1. Calculate

the distance PC.

(b) In the figure on the right below: AR = 2, AB = 1, BC =

2, CA = 2 and BP = 2. Calculate the distance QA.
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Solution:

(a) By Menelaus’ Theorem, we have So 1
2
·
(
−2+PC

PC

)
· 1
1
= −1

It follows that 2 + PC = 2PC, and hence PC = 2.

(b) By Menelaus’ Theorem, we have AR
RB

· BP
PC

· CQ
QA

= −1 So(
−2

3

)
·
(
−2

4

)
·
(
−2+QA

QA

)
= −1 It follows that 2 + QA =

3QA, and hence QA = 1.

□

Problem 3. (a) Determine the ratio CQ
QA

in the left diagram

below, given that

AR

RB
= 2 and

BP

PC
= −2.

b) Determine the ratio CQ
QA

in the right diagram below, given

that
AR

RB
= −1

4
and

BP

PC
= −2.
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Solution:

(a) By Menelaus’ Theorem, we have

AR

RB
· BP

PC
· CQ

QA
= −1

We are given that AR
RB

= 2 and BP
PC

= −2, so

2 · (−2) · CQ

QA
= −1.

Hence CQ
QA

= 1
4

(b) By Menelaus’ Theorem, we have

AR

RB
· BP

PC
· CQ

QA
= −1

We are given that AR
RB

= −1
4
and BP

PC
= −2, so(

−1

4

)
· (−2) · CQ

QA
= −1

Hence CQ
QA

= −2.
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□

Menelaus’ Theorem has a converse that enables us to check

whether points on the three sides of a triangle are collinear.

Theorem 5. ( Converse to Menelaus’ Theorem) Let

P,Q and R be points other than vertices on the (possibly

extended) sides BC,CA and AB of a triangle△ABC, such

that
AR

RB
· BP

PC
· CQ

QA
= −1 (3)

Then the points P,Q and R are collinear.

Proof: Let the line ℓ that passes through Q and R meet BC at

some point P ′. It is sufficient to prove that P = P ′. It follows

from Menelaus” Theorem that

AR

RB
· BP

P ′C
· CQ

QA
= −1

Hence, from equations (3) and (4) we deduce that

BP

PC
=

BP ′

P ′C

It follows that P and P ′ must indeed be the same point. □

Problem 4. The triangle△ABC has vertices A(2, 4), B(−2, 0)

and C(1, 0), and the points P
(
5
2
, 0
)
, Q
(
3
2
, 2
)
and R(1, 3) lie on

BC,CA and AB, respectively.

(a) Determine the ratios in which P,Q and R divide the
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sides of the triangle.

(b) Hence determine whether the points P,Q and R are

collinear.

Solution:

(a) Here we have

BP

PC
=

x
P
− x

B

x
C
− x

P

=
5
2
+ 2

1− 5
2

= −3

CQ

QA
=

x
Q
− x

C

x
A
− x

Q

=
3
2
− 1

2− 3
2

= 1

AR

RB
=

x
R
− x

A

x
B
− x

R

=
1− 2

−2− 1
=

1

3

Thus

P divides BC in the ratio −3 : 1,

Q divides CA in the ratio 1 : 1,

R divides AB in the ratio 1 : 3.

(b) It follows from part (a) that

AR

RB
· BP

PC
· CQ

QA
=

1

3
· (−3) · 1 = −1

Thus by the converse to Menelaus’ Theorem, the points

P,Q and R are collinear.

□
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We end this subsection with two revision problems.

Problem 5. Let △ABC be a triangle, and let X be a point

which does not lie on any of its (extended) sides. Also, let AX

meet BC at P,BX meet CA at Q and CX meet BA at R; and

let QR and BC meet at T . Given that BP
PC

= k, determine BT
TC

in terms of k.

Solution: By Ceva’s Theorem, we have

AR

RB
· BP

PC
· CQ

QA
= 1. (∗)

Also, by Menelaus’ Theorem, we have

AR

RB
· BT

TC
· CQ

QA
= −1. (∗∗)

Comparing (∗) and (∗∗), we deduce that

BT

TC
= −BP

PC
= −k

□

Problem 6. Suppose that P and Q are the midpoints of the

sides AB and BC of a parallelogram ABCD, and that the lines

DP and AQ meet at R.

(a) Determine the image of B under the affine transforma-

tion t which maps A,D and C to (0, 1), (0, 0) and (1, 0),

respectively.
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(b) By considering the image of ABCD under t, determine

the ratios PR : RD and AR : RQ

Solution: By the Fundamental Theorem of Affine Geometry

(Theorem 1 , Subsection 2.3.2 ), there exists a unique affine

transformation t which maps A,D and C to A′(0, 1), D′(0, 0)

and C ′(1, 0), respectively.

(a) Since t maps AD onto the vertical line A′D′, and BC is

parallel to AD, it follows that the image of BC under

t must be a vertical line. Also, since t maps DC onto

the horizontal line D′C ′, and AB is parallel to DC, the

image of AB under t must be a horizontal line. It follows

that B′, the image of B under t, must be the point with

coordinates (1, 1).

(b) Since P is the midpoint of AB, its image P ′ = t(P )

must be the midpoint of A′B′ since ratios along a line

are preserved by t. Hence P ′ =
(
1
2
, 1
)
.

Since the slope of D′P ′ is 2 and the line passes through

the origin, the equation of the line D′P ′ must be

y = 2x (∗)

Next, since Q is the midpoint of BC, its image Q′ = t(Q)

must be the midpoint of B′C ′. Hence Q′ =
(
1, 1

2

)
. Then
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the slope of the line A′Q′ must be

1− 1
2

0− 1
= −1

2

Since the line passes through the point A′(0, 1), the equa-

tion of the line A′Q′ must be

y − 1 = −1

2
(x− 0)

that is,

y = −1

2
x+ 1 (∗∗)

Now, R′, the image of R under t, must lie on the lines

D′P ′ and A′Q′, so that its coordinates must satisfy both

(∗) and (∗). Substituting for y from (∗) into (∗∗), we
obtain

2x = −1

2
x+ 1

so that x = 2
5
. It follows from (∗) that y = 4

5
. Thus R′ is

the point
(
2
5
, 4
5

)
.

Comparing the y -coordinates 1, 4
5
and 0 of P ′, R′ and D′,

we obtain P ′R′ : R′D′ = 1 : 4.

Since ratios along a line are preserved by the affine trans-

formation t−1, it follows that

PR : RD = 1 : 4
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Finally, comparing the x -coordinates 0, 2
5
and 1 of A′, R′

and Q′, we obtain A′R′ : R′Q′ = 2 : 3. Since ratios along

a line are preserved under the affine transformation t−1,

it follows that

AR : RQ = 2 : 3.

□

2.5 Affine Transformations and Con-

ics

2.5.1 Classifying Non-Degenerate Conics in

Affine Geometry

In Section 2.2 you saw that under an affine transformation

a straight line maps to a straight line. Indeed, it follows from

the Fundamental Theorem of Affine Geometry that any straight

line can be mapped to any other straight line by some affine

transformation. We now explore the corresponding situation

for conics. Recall that a conic is a set inR2 given by an equation

of the form

Ax2 +Bxy + Cy2 + Fx+Gy +H = 0 (1)

where A,B,C, F,G and H are real numbers, and A,B and C

are not all zero. The three types of non-degenerate conic are
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ellipses, parabolas and hyperbolas. A non-degenerate conic is

an ellipse if B2 − 4AC < 0, a parabola if B2 − 4AC = 0, and

a hyperbola if B2 − 4AC > 0.

First, consider the case where equation (1) represents an

ellipse, as illustrated on the left of the figure below. We can

apply a translation to move the centre of the ellipse to the ori-

gin, and then a rotation to align its major and minor axes with

the directions of the x -axis and y -axis, respectively. After we

have applied these two Euclidean transformations, the equation

of the ellipse becomes

x2

a2
+

y2

b2
= 1, a ≥ b > 0 (2)

If we now apply the affine transformation t1 : (x, y) 7→ (x′, y′),

where (
x′

y′

)
=

(
1/a 0

0 1/b

)(
x

y

)
.

then x′ = x/a and y′ = y/b, so equation (2) becomes

(x′)
2
+ (y′)

2
= 1.

Since the translation, the rotation and the transformation

t1 are all affine, their composite must also be affine. Overall,
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this shows that each ellipse can be mapped onto the unit circle

by an affine transformation. We therefore have the following

theorem.

Theorem 1. Every ellipse is affine-congruent to the unit

circle with equation x2 + y2 = 1

Secondly, consider the case where equation (1) represents a

hyperbola, as illustrated on the left of the figure below. Again,

we can apply a translation to move the centre of the hyperbola

to the origin, and then a rotation to align its major and minor

axes with the directions of the x -axis and y -axis, respectively.

After we have applied these two transformations, the equation

of the hyperbola becomes

x2

a2
− y2

b2
= 1. (3)

Under the affine transformation t1 defined above, equation (3)

becomes

(x′)
2 − (y′)

2
= 1

that is,

(x′ − y′) (x′ + y′) = 1 (4)

Finally, if we apply the affine transformation t2 : (x′, y′) 7→
(x′′, y′′), where (

x′′

y′′

)
=

(
1 −1

1 1

)(
x′

y′

)
.
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then equation (4) becomes

x′′y′′ = 1

Dropping the dashes from the equation x′′y′′ = 1, we obtain

the following theorem.

Theorem 2. Every hyperbola is affine-congruent to the

rectangular hyperbola with equation xy = 1.

Finally, consider the case where equation (1) represents a

parabola, as illustrated on the left of the figure below. We

can apply a translation to move the vertex of the parabola

to the origin, and then a rotation to align its axis with the

(positive) x -axis. After we have applied these two Euclidean

transformations, the equation of the parabola becomes

y2 = ax (5)

where a is some positive number which depends on the coeffi-

cients in equation (1). Next, if we apply the affine transforma-

tion t3 : (x, y) 7→ (x′, y′), where(
x′

y′

)
=

(
1/a 0

0 1/a

)(
x

y

)
.
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then x′ = x/a and y′ = y/a, so equation (5) becomes

(y′a)2 = a (x′a), or

(y′)
2
= x′

Dropping the dashes, we obtain the following theorem.

Theorem 3. Every parabola is affine-congruent to the

parabola with equation y2 = x.

Since all parabolas are affine-congruent to y2 = x, they

must be affine-congruent to each other. Similarly, by Theorem

1, all ellipses must be affine-congruent to each other; and, by

Theorem 2, all hyperbolas must be affine-congruent to each

other.

This raises the question as to whether it is possible for one

type of conic (such as an ellipse) to be affine-congruent to an-

other type of conic (such as a hyperbola). The next theorem

shows that this cannot happen. In fact, since an affine trans-

formation can be expressed as the composite of two parallel

projections, this should not surprise you. After all, no parallel

projection can change a bounded curve (such as an ellipse) into

an unbounded one (such as a parabola or a hyperbola); nor can
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it change a curve with two branches (a hyperbola) into a curve

with just one branch (an ellipse or a parabola).

Theorem 4. Affine transformations map ellipses to el-

lipses, parabolas to parabolas, and hyperbolas to hyper-

bolas.

Proof: Consider the non-degenerate conic with equation

Ax2 +Bxy + Cy2 + Fx+Gy +H = 0 (6)

and its image under an affine transformation t : x 7→ x′ given

by

x′ = Ax+ b

where A is an invertible 2× 2 matrix. The inverse affine trans-

formation t−1 : x′ 7→ x is given by

x = A−1x′ −A−1b

which we may write in the form(
x

y

)
=

(
p q

r s

)(
x′

y′

)
+

(
u

v

)

for some real numbers p, q, r, s, u and v. It follows that

x = px′ + qy′ + u and y = rx′ + sy′ + v (7)

If we now substitute these expressions for x and y into equation
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(6), then the resulting equation is a second-degree equation in

x′ and y′, so the image of the conic under the affine transfor-

mation t must be another conic.

Next we show that this image conic cannot be degenerate,

A degenerate image would consist of a pair of lines, a single

line, a point, or the empty set. Since the affine transformation

t−1 maps lines to lines, it would map the degenerate image to

another degenerate conic. But this cannot happen since t−1

maps the image back to the original non-degenerate conic (6).

It follows that the image of (6) cannot be degenerate.

Finally, if we substitute for x and y from equations (7) into

equation (6), and keep careful track of the algebra involved, it

turns out that the discriminant of the image conic is just

(ps− nq)2
(
B2 − 4AC

)
Here B2 − 4AC is the discriminant of the original conic. Since

(ps− nq)2 > 0, the sign of the discriminant is not changed by

an affine transformation of a conic. Hence the type of the conic

is also unchanged. □

We can combine the results of Theorems 1−4 to obtain the

following corollary.

Corollary. In affine geometry:

(a) all ellipses are congruent to each other:
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(b) all hyperbolas are congruent to each other,

(c) all parabolas are congruent to each other.

Non-degenerate conics are congruent only to non-

degenerate conics of the same type.

The corollary shows that affine-congruence partitions the set

of nondegenerate conics into three disjoint equivalence classes.

One class consists of all the ellipses, another class consists of all

the hyperbolas, and the third consists of all the parabolas. Each

class contains one of the so-called standard conics x2 + y2 =

1, xy = 1 and y2 = x.

Just as the Fundamental Theorem of Affine Geometry en-

ables us to deduce a given result about an arbitrary triangle by

showing that the result holds for an equilateral triangle, so the

corollary enables us to deduce a given result about an arbitrary

ellipse, hyperbola or parabola by showing that the result holds

for the corresponding standard conic. Of course, this works

only if the result is concerned with the affine properties of the

conic, so we need to be able to recognize such properties.

The following theorem shows that one such property is the

property of being the centre of an ellipse or hyperbola.

Theorem 5. Let t be an affine transformation, and let C

be an ellipse or hyperbola with centre R. Then f(C) has

centre t(R).
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Proof: Let C ′ and R′ be the images of C and R under t. If

P ′ is any point on C ′, then it must be the image of some point

P on C. Since R is the centre of C, we can rotate P about

R through an angle π to a point Q which must also lie on C.

Hence Q′ = t(Q) is a point on C ′.

Now t preserves ratios of lengths along lines, so the line

segment PRQ maps onto the line segment P ′R′Q′ with P ′R′ =

R′Q′. Thus if we rotate P ′ about R′ through an angle π, it

must go to Q′ on C ′. Now, as our choice for P ′ as a point on

C ′ varies, so do P = t−1 (P ′) and Q. but the point R is always

the same point. It follows that the midpoint of P ′Q′ is always

the same point R′ = t(R). Hence R′ = t(R) is the centre of C ′,

as required. □

Another affine property is the property of being an asymp-

tote of a hyperbola.

Theorem 6. Let t be an affine transformation, and let H

be a hyperbola with asymptotes ℓ1 and ℓ2 . Then t(H) has

asymptotes t (ℓ1) and t (ℓ2)
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The figure below illustrates that this theorem is plausible for

parallel projections.

Proof: The hyperbola H possesses exactly two (distinct) fam-

ilies of parallel lines each of which fills the plane, with each

member of each family meeting H exactly once - apart from

one line in each family that is an asymptote of H, and so does

not meet H.

The image of H under the affine transformation t is also

a hyperbola, t(H). The images under t of the two families of

parallel lines are also (distinct) families of parallel lines; within

each family, a line that meets H once is mapped onto a line

that meets t(H) once, and the single line that does not meet

H maps onto a line that does not meet t(H). So the two

exceptional lines in the image families must be the asymptotes

of the hyperbola t(H).

It follows that the asymptotes of H are mapped by t to the

asymptotes of t(H), as required. □ Many of the problems

concerning conics which are particularly amenable to solution
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using the methods of affine geometry involve tangents.

This is due to the following theorem, which asserts that

tangency is an affine property.

Theorem 7. Let t be an affine transformation, and let ℓ

be a tangent to a conic C. Then t(ℓ) is a tangent to the

conic t(C).

The figure below illustrates the theorem for parallel projections.

Solution: We shall use the fact that a tangent to a conic

(whether it is an ellipse, a hyperbola or a parabola) intersects

the conic at exactly one point.

First, the image of an ellipse E under an affine transforma-

tion t is an ellipse. A tangent to E is a line that intersects E in

exactly one point. These properties remain unchanged under

an affine projection; hence the image of a tangent to E under

an affine transformation t must be a tangent to t(E).
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Next, the image of a hyperbola H under an affine trans-

formation t is a hyperbola. A tangent to H is a member of a

family of parallel lines that fill the plane such that there are

lines in the family that meet H twice, once and not at all; there

are exactly two lines in the family that meet H exactly once,

and these are tangents to H. The image of the family of lines

under t is again a family of parallel lines that fill the plane; it

contains lines that meet the parabola t(H) twice and not at all,

and exactly two lines that meet H exactly once. These lines are

the images of the original tangents to H, and must themselves

be tangents to t(H). Hence, the image of a tangent to H under

an affine transformation t must be a tangent to t(H).

Finally, the image of a parabola P under an affine transfor-

mation t is a parabola. A tangent to P is a member of a family

of parallel lines that fill the plane such that there are lines in

the family that meet P twice, once and not at all; the tangent

is the unique member of the family that meets P exactly once.

The image of the family of lines under t is again a family of

parallel lines that fill the plane; it contains lines that meet the

parabola t(P ) twice and not at all, and a single line that meets

P exactly once. This line is the image of the original tangent

to P , and must itself be a tangent to t(P ). Hence, the image

of a tangent to P under an affine transformation t must be a

tangent to t(P ).

This completes the proof. □
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In applications we often use the following facts that you met

earlier

Tangents to Conics in Standard Form The equation of

the tangent to a standard conic at the point (x1 , y1) is as fol-

lows.
Conic Tangent

Unit circle x2 + y2 = 1 x x1 + yy1 = 1

Rectangular hyperbola xy = 1 xy1 + yx1 = 2

Parabola y2 = x 2yy1 = x+ x1

2.5.2 Applying Affine Geometry to Conics

We are now in a position to apply the methods of affine ge-

ometry to th solution of problems involving conics. Of course,

affine geometry can be helpful in this task only if the property

being investigated is one which preserved under affine transfor-

mations. The underlying idea is that we use an affine trans-

formation to map the original conic onto one of our standard

conics, tackle the problem in hand there, and then map back

to the origin: conic. Affine Transformations and Conics

Example 1. AB is a diameter of an ellipse. Prove that the

tangents to the ellipse at A and B are parallel to the diameter

conjugate to AB.

Solution: First, map the ellipse onto the unit circle, by an

affine transformation t. Since the centre O of the ellipse maps
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to the centre O′ of the circle, the image of the diameter AB is

a diameter A′B′ of the unit circle.

All chords of the circle that are parallel to the tangents at

A′ and B′ are bisected by A′B′, and so the diameter through O′

is the diameter conjugate to A′B′. Since parallel lines map to

parallel lines and ratios along parallel lines are preserved under

the inverse affine transformation t−1, it follows that all chords

of the ellipse that are parallel to the tangents at A and B are

bisected by AB, and so the diameter through O that is parallel

to the tangents at A and B is the diameter conjugate to AB.

□

Problem 1. An ellipse touches the sides BC,CA and AB of

△ABC at the points P,Q and R, respectively. Prove that

AR

RB
· BP

PC
· CQ

QA
= 1

and deduce that the lines AP,BQ and CR are concurrent.
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Solution: First, map the ellipse onto the unit circle, by some

affine transformation t. Since tangency is preserved by affine

transformations, the image under t of the triangle △ABC is

another triangle ∆A′B′C ′, whose sides are tangential to the

unit circle.

These sides touch the unit circle at P ′ = t(P ), Q′ = t(Q)

and R′ = t(R).

By Problem 1 of Section 2.1, the two tangents from a point

to a circle are of equal length, and so (ignoring the directions

of line segments)

A′Q′ = A′R′, B′P ′ = B′R′ and C ′P ′ = C ′Q′

In terms of signed distances, it follows that

A′R′

R′B′ ·
B′P ′

P ′C ′ ·
C ′Q′

Q′A′ = ±1;

in fact the product must equal 1 since P,Q and R are internal

points of the sides of the triangle and therefore each of the

above three fractions is positive.
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Since ratios of lengths along a line are not changed by the

inverse affine transformation t−1, we deduce that

AR

RB
· BP

PC
· CQ

QA
= 1,

It follows from the converse to Ceva’s Theorem that the

lines AP,BQ and CR are concurrent. □

Problem 2. The tangents to an ellipse at two points A and B

meet at a point T . Prove that the line joining T to the centre

O of the ellipse bisects the chord AB.

Solution: First, map the ellipse onto the unit circle, by some

affine transformation t. Since tangency is preserved by affine

transformations, the images under t of the tangents TA and

TB are tangents T ′A′ and T ′B′ to the unit circle.

Let P ′ be the point of intersection of the chord A′B′ with the

line joining T ′ to O′, the centre of the unit circle. By symmetry,

the triangles ∆T ′A′P ′ and ∆T ′B′P ′ are Euclidean- congruent

and so A′P ′ = B′P ′; in other words, P ′ is the midpoint of A′B′.
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Let the line joining T to the centre O of the ellipse meet

AB at P . Then, since P ′ is the midpoint of A′B′ and since

midpoints of line segments and centres of ellipses are preserved

by the inverse transformation t−1, P = t−1 (P ′) is the midpoint

of AB = t−1 (A′B′). Hence OP bisects all chords of H that are

parallel to ℓ. □

The rectangular hyperbola H = {(x, y) : xy = 1} does

not possess as much symmetry as does the unit circle; so the

fact that every hyperbola is affinecongruent to H may not be

sufficient to simplify a given problem. Fortunately. however, we

can also arrange for any given point on the original hyperbola

to map to the point (1, 1) on H.

To see this, note that for any non-zero number a, the affine

transformation

ta :

(
x

y

)
7→

(
a 0

0 1/a

)(
x

y

)

maps H to itself. For, an arbitrary point on H has coordinates
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of the form (x, 1/x), x ̸= 0, and under ta this is mapped to the

point (ax, 1/ax), which also lies on H. As x varies through

R−{0}, its image (ax, 1/ax) varies over the whole of H, so the

image of H under ta is the whole of H.

So if we start with a given hyperbola and a point P on it,

we can map the hyperbola to H by some affine transformation

s. The point s(P ) will then have coordinates (b, 1/b) for some

number b ∈ R − {0]; so if we choose a = 1/b, then the affine

transformation ta will map s(P ) to (1, 1). Overall, the compos-

ite t = ta ◦ s is an affine transformation which maps the given

hyperbola to H, and maps P to (1, 1). We now state this as a

corollary to Theorem 2 .

Corollary. Given any hyperbola and a point P on it, there

is an affine transformation which maps the hyperbola onto

the rectangular hyperbola xy = 1, and the point P to (1, 1).

Example 2. The tangent at the point P on a hyperbola meets

the asymptotes at the points A and B. Prove that PA = PB.

Solution: Let t be an affine transformation which maps the

hyperbola onto the rectangular hyperbola H = {(x, y) : xy =
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1} in such a way that t(P ) = (1, 1). Then, by Theorem 6 of

Subsection 2.5.1, the asymptotes of the hyperbola map to the

asymptotes of H; and, by Theorem 7 of Subsection 2.5.1, the

tangent at P maps to the tangent at (1, 1).

By symmetry, (1, 1) is the midpoint of the line seg-

ment from t(A) to t(B). Since midpoints are preserved under

the affine transformation t−1, it follows that P is the midpoint

of AB. □

Problem 3. P is a point on a hyperbola H with centre O.

Prove that there exists a line ℓ through O such that all chords

of the hyperbola which are parallel to ℓ are bisected by OP .

Solution: First, map the hyperbola H onto the rectangular

hyperbolaH ′ = {(x, y) : xy = 1} by some affine transformation

t, in such a way that t maps P to the point (1, 1). Since the

property of being the centre of the hyperbola is preserved under

affine transformations, t maps the centre, O, of H to the centre

of H ′, namely the origin.

Let m′ be the image of OP under t. Then m′ passes through

the origin and the point (1, 1), so its equation is y = x. Clearly,

H ′ is symmetric with respect to m′. Now let ℓ′ be the line with

equation y = −x; this is perpendicular to m′. By symmetry,

m′ bisects all chords of the rectangular hyperbola which are

parallel to ℓ′.

But the properties of parallelism and of ratios along

a line are preserved by affine transformations, so if ℓ is the line
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t−1 (ℓ′), then OP bisects all chords of H which are parallel to

ℓ. □
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2.6 Exercises

Section 2.1

1. Let △ABC be a triangle in which AB = AC. Prove that

∠ABC = ∠ACB.

Hint: Consider a reflection in the bisector of ∠BAC.

2. Determine which of the following transformations t :

R2 → R2 are Euclidean transformations.

(a) t(x) =

(
−1

2
−

√
3
2

−
√
3
2

1
2

)
x+

(
−3

1

)

(b) t(x) =

(
−2

3
−1

3

−1
3

2
3

)
x+

(
3

2

)

(c) t(x) =

(
− 1√

5
2√
5

− 2√
3

− 1√
3

)
x+

(
2

−3

)

3. The Euclidean transformations t1 and t2 are given by

t1(x) =

(
1√
5

2√
5

2√
3

− 1√
3

)
x+

(
−1

1

)

and

t2(x) =

(
1√
3

2√
3

− 2√
5

1√
5

)
x+

(
2

−1

)
.

Determine the composites t1 ◦ t2 and t2 ◦ t1 .
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4. Determine the inverse of each of the following Euclidean

transformations.

(a) t(x) =

(
5
13

−12
13

12
13

5
13

)
x+

(
−4

5

)

(b) t(x) =

(
−12

13
− 5

13

− 5
13

12
13

)
x+

(
1

−1

)
5. The Euclidean transformations t1 and t2 are given by

t1(x) =

(
1√
2

1√
2

1√
2

− 1√
2

)
x+

(
1

−1

)

and

t2(x) =

(
− 1√

2
1√
2

− 1√
2

− 1√
2

)
x+

(
1

1

)
.

Determine the composite t−1
2

◦ t1 .

Section 2.2

1. Determine whether or not each of the following transfor-

mations t : R2 → R2 is an affine transformation.

(a) t(x) =

(
2 −2

−3 3

)
x+

(
2

−1

)

(b) t(x) =

(
5 −2

−2 5

)
x+

(
−3

−1

)

(c) t(x) =

(
−1 1

−1 −2

)
x
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2. Write down an example (if one exists) of each type of

transformation t : R2 → R2 described below. In each

case, justify your answer.

(a) An affine transformation t which is not a Euclidean

transformation

(b) A Euclidean transformation t which is not an affine

transformation

(c) A transformation t which is both Euclidean and

affine

(d) A transformation t which is one-one, but is neither

Euclidean nor affine

3. The affine transformations t1 and t2 are given by

t1(x) =

(
2 −3

1 −1

)
x+

(
1

−1

)

and

t2(x) =

(
−1 2

−1 1

)
x+

(
−1

1

)
Determine the following composites.

(a) t1 ◦ t2
(b) t2 ◦ t1
(c) t1 ◦ t1

4. Determine the inverse of each of the following affine trans-

formations.
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(a) t(x) =

(
2 −3

3 −5

)
x+

(
2

4

)

(b) t(x) =

(
3 2

4 2

)
x+

(
1

−2

)

5. Prove that the transformation

t(x) = 3x
(
x ∈ R2

)
is an affine transformation, but not a parallel projection.

6. Which of the following are affine properties?

(a) distance

(b) collinearity

(c) circularity

(d) magnitude of angle

(e) midpoint of line seg-

ment

Section 2.3

1. The affine transformation t : R2 → R2 is given by

t(x) =

(
1 −1

2 −3

)
x+

(
2

−4

)

Determine the image under t of each of the following lines.

(a) y = −2x (b) 2y = 3x− 1
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2. The affine transformation t : R2 → R2 is given by

t(x) =

(
4 5

1 1

)
x+

(
1

−1

)

Determine the image under t of each of the following lines.

(a) 2x− 5y + 3 = 0 (b) 3x+ y − 4 = 0

3. Determine the affine transformation which maps the

points (0, 0), (1, 0) and (0, 1) to the points:

(a) (0,−1), (1, 1) and (−1, 1), respectively:

(b) (−4,−5), (1, 7) and (2,−9), respectively.

4. Determine the affine transformation which maps the

points (1, 1), (3, 2) and (4, 1) to the points (0, 1), (1, 2)

and (3, 7), respectively.

5. Determine the affine transformation which maps the

points (1,−1), (5,−4) and (−2, 1) to the points

(1, 1), (4, 0) and (0, 2), respectively.

6. Prove that the affine transformation t for which

t(x) =

(
−1 2

3 −2

)
x

maps each point of the line y = x in R2 onto itself.

217



7. Determine the matrices A and b for the affine transfor-

mation

t(x) = Ax+ b

where A and b are 2×2 and 2×1 matrices, respectively,

given that t maps each point of the line y = 0 onto it-

self and (0, 1) onto (2, 3). Prove also that t is a parallel

projection of R2 onto itself.

Section 2.4

1. The points P,Q,R and S lie on a line, in that order, the

distances between them are 4 units, 2 units and 3 units,

respectively. Determine the ratios PR : RS and PS : SQ

2. A point X lies inside a triangle △ABC, and the lines

AX,BX and CX meet the opposite sides of the triangle

at P,Q and R, respectively. The ratios AR : AB and

BP : BC are 1 : 5 and 3 : 7, respectively. Determine the

ratio AC : AQ

3. Let ℓ be a line that crosses the sides BC,CA and AB

of a triangle △ABC at three distinct points P,Q and R,

respectively. The ratios BC : CP and CQ : QA are 3 : 2

and 1 : 3, respectively. Determine the ratio AR : RB.

4. ABCD is a parallelogram, and the point P divides AB

in the ratio 2 : 1; the lines AC and DP meet at Q, and

the lines BQ and AD meet at R.
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(a) Determine the images of P,Q and R under the

affine transformation t which maps A,D and C to

(0, 1), (0, 0) and (1, 0), respectively.

(b) By considering the image of ABCD under t, deter-

mine the ratios BQ : QR and AR : RD.

5. The triangle △ABC has vertices A(−1, 2), B(−3,−1)

and C(3, 1), and the points P
(
1, 1

3

)
, Q
(
1, 3

2

)
and

R
(
−5

3
, 1
)
lie on BC,CA and AB. respectively.

(a) Determine the ratios in which P,Q and R divide the

sides of the triangle.

(b) Determine whether or not the lines AP,BQ and CR

are concurrent.

6. The triangle △ABC has vertices A(2, 0), B(−3, 0)

and C(3,−3), and the points P (−1,−1), Q(1, 3) and

R
(
−1

4
, 0
)
lie on BC,CA and AB, respectively.

(a) Determine the ratios in which P,Q and R divide the

sides of the triangle.

(b) Determine whether or not the points P,Q and R are

collinear.

7. △ABC is a triangle, and X a point which does not lie

on any of its (extended) sides. Also, AX meets BC at

P,BX meets CA at Q and CX meets BA at R. Prove

that
AX

XP
=

AR

RB
+

AQ

QC
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(This result is often known as van Aubel’s Theorem.)

8. △ABC is a triangle, and X a point which does not lie

on any of its (extended) sides. Next, AX meets BC at

P,BX meets CA at Q and CX meets BA at R. Also,

RQ meets BC at L, PR meets CA at M and PQ meets

BA at N . Prove that L,M and N are collinear.

Hint: Apply the result of Problem 5 in Subsection 2.4.3

to△ABC and points L,M and N in turn. Then evaluate

the product BL
LC

· CM
MA

· AN
NB

.

9. Three disjoint circles of unequal radii lie in the plane,

their centres being non-collinear. Pairs of tangents are

drawn to each pair of circles such that the point of in-

tersection of the two tangents to each pair of circles lies

beyond the two circles. Prove that the three intersection

points are collinear.

Section 2.5

1. An ellipse touches the sides AB,BC,CD,DA of a par-

allelogram ABCD at the points P,Q,R, S, respectively.

Prove that the lengths CQ,QB,BP and CR satisfy the

equation
CQ

QB
=

CR

BP
.

2. Determine the equation of the image of the parabola P

with equation y = x2 under the affine transformation
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t : R2 7→ R2 given by

t(x) =

(
1 0

−2 1

)
x

Show that the image of the vertex of P is not the vertex

of t(P ).

3. Prove that for any triangle △ABC there exists an ellipse

that touches the sides AB,BC and CA at their mid-

points.

4. Let P (a cos θ, b sin θ), where θ is not a multiple of π/2,

be a point on the ellipse C : x2

a2
+ y2

b2
= 1, where a ≥

b > 0; and P ′(a cos θ, a sin θ) the corresponding point on

the ’auxiliary circle’ C ′ : x2 + y2 = a2. Prove that the

tangents at P to C and at P ′ to C ′ meet on the x -axis.

Hint: Write down an affine transformation that maps C

to C ′ and P to P ′, and that maps each point of the x

-axis to itself.

5. Given any two points P and P ′ on ellipses E and E ′, re-

spectively, show that there exists an affine transformation

that maps E to E ′ and P to P ′.

6. Find the endpoints of the chord AB of the hyperbola H

with equation xy = 1 that is bisected by the point P (2, 1).

7. E is the ellipse with equation x2

9
+ y2

4
= 1, and P

(
3√
3
, 2√

3

)
is a point inside E.AB is a chord of E through P , and O
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is the centre of E. Find the maximum value of AP
PB

as A

varies on E.
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MODULE 3

PROJECTIVE GEOMETRY: LINES

Geometry is one branch of mathematics that has an ob-

vious relevance to the ‘real world’. Earlier, we studied some

results in Euclidean geometry and we described the group of

Euclidean transformations, the isometries. We saw that the

Euclidean transformations preserve distances and angles, and

have a definite physical significance.

In this chapter we study projective geometry, a very differ-

ent type of geometry, that has important but less obvious appli-

cations. It was discovered through artists’ attempts over many

centuries to paint realistic-looking pictures of scenes composed

of objects situated at differing distances from the eye. How can

three-dimensional scenes be represented on a two-dimensional

223



canvas? Projective geometry explains how an eye perceives ‘the

real world’, and so explains how artists can achieve realism in

their work.

3.1 Perspective

3.1.1 Perspective in Art

The first ‘pictures’ were probably Cave Art wall paintings:

for example, depictions of animals and hunters. Up to the Mid-

dle Ages, most pictures were drawn on walls, floors or ceilings

of buildings and were intended to convey messages rather than

to be accurate illustrations of what an eye might see. For exam-

ple, Christian religious art portrayed Christ and the Saints, the

Bayeux tapestry outlined events such as the Norman Conquest

and the Battle of Hastings, and so on.
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To the modern eye, the people and animals in these pic-

tures appear to be rather stylized, and the whole scene seems

very two-dimensional. The events illustrated do not appear

to be properly integrated into the background, even if this is

included.

Towards the end of the 13th century, early Renaissance

artists began to attempt to portray ‘real’ situations in a re-

alistic way. For example, people at the back of a group would

be drawn higher up than those at the front – a technique known

as terraced perspective.

As artists struggled to find better techniques to improve

the realism of their work, the idea of vertical perspective was

developed by the Italian school of artists (including Duccio

(1255–1318) and Giotto (1266–1337)). To create an impression

of depth in a scene, the artist would represent pairs of parallel

lines that are symmetrically placed either side of the scene by

lines that meet on the centre line of the picture. The method is
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not totally realistic, since objects do not appear to recede into

the distance in the way that might be expected. The problem

of depicting ‘distant objects looking smaller’, with a properly

integrated foreground and background, was tackled by many

artists, including notably Ambrogio Lorenzetti (c. 1290–1348).

The modern system of focused perspective was discov-

ered around 1425 by the sculptor and architect Brunelleschi

(1377–1446), developed by the painter and architect Leone Bat-

tista Alberti (1404–1472), and finally perfected by Leonardo da

Vinci (1452–1519).

These artists realized that what the eye actually ‘sees’ of a

scene are the various rays of light travelling from each point in

the scene to the eye. An effective way of deciding how to depict

a three-dimensional scene on a two-dimensional canvas so as to
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create a realistic impression is therefore as follows. Imagine a

glass screen placed between the eye and the three-dimensional

scene. Each line joining the eye to a point of the scene pierces

the glass screen at some point. The set of all such points forms

an image on the screen known as a cross-section. Since the eye

cannot distinguish between light rays coming from the points of

the actual scene and light rays coming from the corresponding

points of the cross-section (since these are in exactly the same

direction), the cross-section produces the same impression as

the original scene. In other words, the cross-section gives a re-

alistic two-dimensional representation of the three-dimensional

scene.

The German artist Albrecht Dürer (1471–1528) introduced

the term perspective (from the Latin verb meaning ‘to see

through’) to describe this technique, and illustrated it by a

series of well-known woodcuts in his book Underweysung der

Messung mit dem Zyrkel und Rychtsscheyed (1525). The Dürer

woodcut below shows an artist peering through a grid on a glass

screen to study perspective and the effect of foreshortening.
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Of course, the picture displayed on the screen is just one

representation of the scene. If the screen is placed closer to, or

further away from, the eye, the size of the cross-section changes.

Also, the screen may be placed at a different angle for a given

position of the eye, or the eye itself may be moved to a different

position. In each case, a different cross-section is obtained,

though they are all related to each other.
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3.1.2 Mathematical Perspective

To help us understand the relationship between different

representations of a scene, we now look at perspective from a

mathematical point of view. In place of an eye and light rays

travelling to it, we use the family of all lines in R3 through a

given point. For convenience, this point will often be the origin

O. The glass screen is replaced by a plane in R3 that does not

pass through the origin.

In order to compare the cross-sections that appear on dif-

ferent screens, we consider two planes π and π′ that do not pass

through O. A point P in π and a point Q in π′ are said to be

in perspective from O if there is a straight line through O,P

and Q. A perspectivity from π to π′ centred at O is a function

that maps a point P of π to a point Q of π′ whenever P and

Q are in perspective from O. Notice that the planes π and π′

may lie on the same side of O as shown on the left below, or

they may lie on opposite sides of O as shown on the right.

One complication with the above definition of a perspectiv-
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ity is that the domain of the perspectivity is not necessarily

the whole of π. Indeed, if P is any point of π such that OP is

parallel to π′, as shown in the margin, then P cannot have an

image in π′, and cannot therefore belong to the domain of the

perspectivity. From a mathematical point of view, this need to

exclude such exceptional points from the domain of a perspec-

tivity turns out to be rather a nuisance. In Subsection 3.2.3

we shall therefore reformulate the definition of a perspectivity

in such a way that these exceptional points can be included in

the domain.

Even with only the preliminary definition of perspectivity given

above, it is clear that some features of figures are preserved

under a perspectivity, while others are not. For example, the

figure on the left below illustrates a particular perspectivity in

which a line segment in one plane maps onto a line segment

in another plane. This suggests that collinearity is preserved

by a perspectivity. On the other hand, the figure on the right
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illustrates a perspectivity in which a circle in one plane appears

to map to a parabolic shape in another plane, which suggests

that ‘circularity’ is not preserved.

One of our main tasks is to study the images of standard

configurations such as lines and conics under perspectivities.

This chapter deals with lines; the next chapter deals with con-

ics.

Consider a perspectivity with centre O that maps points in

a plane π to points in a plane π′. A convenient way to visualize

the image of a line ℓ under the perspectivity is to consider an

arbitrary point P on ℓ. As P moves along ℓ, the line OP sweeps

out a plane. The line ℓ′ where this plane intersects π′ is the

image of ℓ.
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To be specific, consider the perspectivity p with centre O

that maps points in a horizontal plane π to points in a vertical

plane π′, and let L be the line where π and π′ intersect. Under

p, every line ℓ in π that is parallel to L maps to a horizontal

line ℓ′ in π′. In particular, L maps to itself. The only exception

is the line h that passes through the foot of the perpendicular

from O to π. This line does not have an image in π′ since the

lines joining points of h to O are parallel to π′.

Next, consider the image under the same perspectivity p of

a line ℓ in π that is perpendicular to L. To do this, let P denote
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the foot of the perpendicular from O to the plane π′. Although

P is not the image of any point of π, the plane through O and

ℓ meets π′ in some line ℓ′ that passes through P . It follows

that the image of ℓ under p is some line ℓ′ through P , with the

point P itself omitted.

The above argument works for any line in π that is perpen-

dicular to L. All such lines are mapped by the perspectivity p

to lines in π′ that pass through P , and that omit the point P

itself.

We may combine our observations concerning lines in π that

are parallel to L or perpendicular to L in the following way. Let

ABCD be a rectangle in π on the opposite side of L from O,

with sides AB and CD that lie on lines ℓ1 and ℓ2 , perpendicular

to L. Then AD and BC both map onto horizontal lines in π′

between L and P . As the side BC recedes from L, its image

BC ′ under the perspectivity p moves further up π′ towards P ,

becoming shorter as it moves.
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To an observer whose eye is located at O, the lines ℓ1 and

ℓ2 appear to meet ‘at infinity’, and this corresponds to their

images under p appearing to meet at P . The point P is called

the principal vanishing point of the perspectivity p because the

images in π′ of all lines in π perpendicular to L appear to vanish

there.

In fact, a perspectivity has many vanishing points. For

instance, let ℓ be any line in π that intersects L at an angle

of π/4. Now let h′ be the horizontal line in π′ through P , and

let D be the point on h′ such that OD is parallel to ℓ. Then

the plane through O and ℓ meets π′ in some line ℓ′ that passes

through D. It follows that the image of ℓ under p is a line

through D, with the point D itself omitted.
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The point D is called a diagonal vanishing point of the

perspectivity. All lines in the plane π that are parallel to the

given line ℓ have images in π′ that lines through D, with the

point D itself omitted.

In the same way, each point of the horizontal line h′ in π′

through P is a vanishing point for the images of all lines in π in

some direction; hence the line h′ is called the vanishing line. It

corresponds to the ‘horizon’ in the plane -in other words, to the

points ‘at infinity’ towards which an observer’s eye is pointing

when looking in a horizontal direction.

3.1.3 Desargues’ Theorem

The idea that information in three dimensions can be re-

lated to information in two dimensions, and vice versa, plays
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an important role in mathematics just as it does in Art. For

example, consider the following three-dimensional figure that

consists of two triangles△ABC and△A′B′C ′ which are in per-

spective from a point U . For the moment we shall assume that

no pair of corresponding sides BC and B′C ′, CA and C ′A′, and

AB and A′B′, are parallel.

We shall show that this three-dimensional figure has the

property that BC and B′C ′, CA and C ′A′, AB and A′B′ meet

at P,Q,R, respectively, where P,Q and R are collinear. This

will enable us to formulate an equivalent two- dimensional re-

sult, known as Desargues’ Theorem.

To prove the three-dimensional result, observe that both

BC and B′C ′ lie in the plane that passes through the points

U,B and C. Since BC and B′C ′ are coplanar but not parallel,

they must meet at some point P .
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Similarly, the sides CA and C ′A′ meet at some point Q, and

the sides AB and A′B′ meet at some point R. Since the points

P,Q and R lie both on the plane which contains the triangle

△ABC and on the plane which contains the triangle △A′B′C ′,

they must lie on the line ℓ where the two planes meet. It follows

that P,Q and R are collinear.

To obtain the equivalent two-dimensional result, imag-

ine that you are viewing the three-dimensional configuration

through a transparent screen. Since this viewing process will

not alter the collinearity of points or the coincidence of lines,
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we may reinterpret the three-dimensional result in terms of the

image on the screen to obtain the following theorem.

Theorem 1. Desargues’ Theorem Let △ABC and

△A′B′C ′ be triangles in R2 such that the lines AA′, BB′

and CC ′ meet at a point U . Let BC and B′C ′ meet at

P , CA and C ′A′ meet at Q, and AB and A′B′ meet at R.

Then P,Q and R are collinear.

Strictly speaking, we have not proved this theorem since it

is not immediately obvious that △ABC and △A′B′C ′ can be

obtained as images of triangles in R3 which have corresponding

sides that are not parallel. Nevertheless, the above argument

does provide reasonably convincing evidence that the theorem

is true.

One remarkable feature of the above argument is the way

in which the geometry of the figure on the transparent screen

is characterized by the rays of light that enter an eye. Thus

a point on the screen corresponds to a single ray of light that

enters the eye, a line on the screen corresponds to a plane of

rays of light that enter the eye, and so on. The geometry of

the figure can be investigated entirely in terms of these rays of

light. The screen is needed only to interpret the result in terms

of a two-dimensional figure.
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3.2 The Projective Plane RP2

3.2.1 Projective Points

Imagine an eye situated at the origin of R3 looking at a fixed

screen. As we mentioned in Subsection 3.1.1, each point of the

screen corresponds to the ray of light that enters the eye from

the point. This correspondence between points of the screen

and rays of light through the origin is the clue that we need to

define a space of points for our new geometry.

Rather than use the points of the screen directly, we use

the rays of light that enable an eye to ‘see’ the points from the

origin. We can express this idea mathematically by defining

a projective point to be a Euclidean line in R3 that passes

through the origin. In order to avoid confusion with Euclidean

points of R3, we write Point with a capital P whenever we mean

a projective point.
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Definition. A Point (or projective point) is a line in R3

that passes through the origin of R3. The real projective

plane RP2 is the set of all such Points.

In order to prove results in projective geometry alge-

braically, we need to have an algebraic notation that can be

used to specify the Points of RP2. To do this, we use the fact

that a line ℓ through the origin O in R3 is uniquely determined

once we have specified a Euclidean point (other than O) that

lies on ℓ. For example, there is a unique line ℓ in R3 through O

and the point with Euclidean coordinates (4, 2, 6), so we can

use these coordinates to specify a projective point. When doing

this we write the coordinates in the form [4, 2, 6], with square

brackets to indicate that the coordinates refer to a projective

point.

Remark 3.2.1. Often we abuse our notation slightly, by talk-

ing about ’the Point [a, b, c]′ when strictly speaking we should

say ’the Point with homogeneous coordinates [a, b, c]′.

Notice that the homogeneous coordinates of a Point are

not unique. For example, the Point with homogeneous coor-

dinates [4, 2, 6] consists of a line that passes through (0, 0, 0)

and (4, 2, 6). But this line also passes through (−2,−1,−3), so

[4, 2, 6] and [−2,−1,−3] both represent the same Point.

In general, if (a, b, c) is any point on a line through the

origin, and λ is any real number, then ( λa, λb, λc ) also lies on
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the line. Moreover, if (a, b, c) is not at the origin and λ ̸= 0,

then ( λa, λb, λc ) is not at the origin either. It follows that

[a, b, c] and [λa, λb, λc] both represent the same Point, for any

λ ̸= 0. We express this by writing

[a, b, c] = [λa, λb, λc], for any λ ̸= 0 (1)

Conversely, if there is no non-zero real number λ such that

(a′, b′, c′) = (λa, λb, λc)

then (a, b, c) and (a′, b′, c′) cannot lie on the same line through

the origin, and so the homogeneous coordinates [a, b, c] and

[a′, b′, c′] must represent different Points in RP2.

Example 1. Which of the following homogeneous coordinates

represent the same Point in RP2 as [6, 3, 2] ?

(a) [18, 9, 6] (b) [12,−6, 4] (c)
[
1, 1

2
, 1
3

]
(d) [1, 2, 3]

Solution: (a) This represents the same Point as [6, 3, 2], for if

λ = 3, then

[18, 9, 6] = [6λ, 3λ, 2λ] = [6, 3, 2]

(b) This represents a Point different from [6, 3, 2], for there is

no λ that satisfies the simultaneous equations

12 = 6λ,−6 = 3λ, 4 = 2λ
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(c) This represents the same Point as [6, 3, 2], for if λ = 1
6
, then[

1,
1

2
,
1

3

]
= [6λ, 3λ, 2λ] = [6, 3, 2]

(d) This represents a Point different from [6, 3, 2], for there is

no λ that satisfies the simultaneous equations

1 = 6λ, 2 = 3λ, 3 = 2λ

□

Problem 1. Which of the following homogcncous coordinates

represent the same Point in RP2 as [1, 2, 3]?

(a) [2, 4, 6] (b) [1, 2,−3] (c) [−1,−2,−3] (d)

[11, 12, 13]

Solution:

(a) This represents the same Point as [1, 2, 3], for if λ = 2,

then

[2, 4, 6] = [λ, 2λ, 3λ] = [1, 2, 3]

(b) This does not represent the same Point as [1, 2, 3], for

there is no λ that satisfies

1 = λ, 2 = 2λ, −3 = 3λ

(c) This represents the same Point as [1, 2, 3], for if λ = −1,
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then

[−1,−2,−3] = [λ, 2λ, 3λ] = [1, 2, 3]

(d) This does not represent the same Point as [1, 2, 3], for

there is no λ that satisfies

11 = λ, 12 = 2λ, 13 = 3λ

□

At first sight it may seem rather unsatisfactory that the

coordinates of a Point are not unique. However, this ambigu-

ity can often be turned to our advantage. For example, if a

calculation yields a Point of RP2 with fractional homogeneous

coordinates such as
[
1, 1

2
, 1
3

]
, then the rest of the calculation

may be simpler if we ’clear’ the fractions and represent the

Point by the integer homogeneous coordinates [6, 3, 2] instead.

Problem 2. For each of the following homogeneous coordi-

nates, find integer homogeneous coordinates which represent

the same Point.

(a)
[
3
4
, 1
2
,−1

8

]
(b)

[
0, 4, 2

3

]
(c)
[
1
6
,−1

3
,−1

2

]
Solution: In each case we multiply by the least common mul-

tiple of the denominators (or any integer multiple of the least

common multiple) to obtain:

(a)
[
3
4
, 1
2
,−1

8

]
= [6, 4,−1] (multiply by 8 );
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(b)
[
0, 4, 2

3

]
= [0, 12, 2] (multiply by 3) = [0, 6, 1];

(c)
[
1
6
,−1

3
,−1

2

]
= [1,−2,−3] (multiply by 6).

□

Given a collection of homogeneous coordinates, it is not

always easy to spot those that represent the same Point. In

such cases it is sometimes possible to rewrite the coordinates

in a form that makes the comparison easier.

Example 2. Determine homogeneous coordinates of the form

[a, b, 1] for the Points

[2,−1, 4], [4, 2, 8], [2π,−π, 4π],

[200, 100, 400],

[
−1

2
,−1

4
,−1

]
, [6,−9,−12]

Hence decide which homogeneous coordinates represent the

same Points.

Solution: According to equation (1), a Point of RP2 is un-

changed if its homogeneous coordinates are multiplied (or di-

vided) by any non-zero real number. Since the third coordinate

of each Point is non-zero, we may divide by this third coordi-

nate to obtain homogeneous coordinates of the form [a, b, 1] as
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follows:

[2,−1, 4] =

[
1

2
,−1

4
, 1

]
; [4, 2, 8] =

[
1

2
,
1

4
, 1

]
;

[2π,−π, 4π] =

[
1

2
,−1

4
, 1

]
; [200, 100, 400] =

[
1

2
,
1

4
, 1

]
;[

−1

2
,−1

4
,−1

]
=

[
1

2
,
1

4
, 1

]
; [6,−9,−12] =

[
−1

2
,
3

4
, 1

]
.

Since [a, b, 1] = [a′, b′, 1] if and only if a = a′ and b = b′, it

follows that:

[2,−1, 4] and [2π,−π, 4π] represent the same Point;

[4, 2, 8], [200, 100, 400] and
[
−1

2
,−1

4
,−1

]
represent the same

Point;

[6,−9,−12] represents none of the other Points. □

Notice that the method used in Example 2 works only if

the third coordinates of all the Points are non-zero. If this is

not the case, then you may still be able to apply the technique

using the first or second coordinates.

Problem 3. Determine homogeneous coordinates of the form

[1, b, c] for the Points

[2, 3,−5], [−8,−12, 20], [
√
2,
√
3,−

√
5]

[4,−6, 10], [−20,−30, 50], [74, 148, 0]

Hence decide which homogeneous coordinates represent the

same Points.
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Solution: Dividing by the first coordinate in each, we obtain:

[2, 3,−5] =

[
1,

3

2
,−5

2

]
;

[−8,−12, 20] =

[
1,

3

2
,−5

2

]
;

[
√
2,
√
3,−

√
5] =

[
1,

√
3

2
,−
√

5

2

]
;

[4,−6, 10] =

[
1,−3

2
,
5

2

]
;

[−20,−30, 50] =

[
1,

3

2
,−5

2

]
;

[74, 148, 0] = [1, 2, 0].

Hence the homogeneous coordinates

[2, 3,−5], [−8,−12, 20], [−20,−30, 50]

all represent the same Point. The other homogeneous coor-

dinates represent different Points. □

Having defined projective points, we are now in a position

to define a projective figure. Just as a figure in Euclidean

geometry is defined to be a subset of R2, so figures in projective

geometry are defined to be subsets of RP2.

Definition. A projective figure is a subset of RP2.

Projective figures are just sets of lines in R3 that pass through
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the origin. Thus a double cone with a vertex at O, and a

double square pyramid with a vertex at O, are both examples

of projective figures, for they can both be formed from sets of

lines that pass through the origin of R3.

3.2.2 Projective Lines

A particularly simple type of projective figure is a plane

through the origin. Such a plane is a projective figure because

it can be formed from the set of all Points (lines through the

origin of R3 ) that lie on the plane. Since all but one of these

Points can be thought of as rays of light that come from a line

on a screen, it seems reasonable to define any plane through

the origin to be a projective line.
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Just as we use ’Point’ to refer to a ’projective point’, so we

use ’Line’ to refer to a ’projective line’. The use of a capital L

avoids any confusion with lines in R3.

Definition. A Line (or projective line) in RP2 is a plane

in R3 that passes through the origin. Points in RP2 are

collinear if they lie on a Line.

Since a Line in RP2 is simply a plane in R3 that passes through

the origin, it must consist of the set of Euclidean points (x, y, z)

that satisfy an equation of the form

ax+ by + cz = 0

where a, b and c are real and not all zero. We can interpret this

fact in terms of RP2 as follows.

Theorem 1. The general equation of a Line in RP2 is

ax+ by + cz = 0 (2)

where a, b, c are real and not all zero.

Remark

1. The equation of a Line is not unique, for, if λ ̸= 0, then

λax+ λby+ λcz = 0 is also an equation for the Line. We
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can use this fact to ’clear fractions’ from the coefficients

just as we did for the homogeneous coordinates of a Point.

2. From the figure in the margin it is clear that a Point lies

on a Line, or a Line passes through a Point, if and only

if the Point has homogeneous coordinates [x, y, z] which

satisfy the equation of the Line. For example, [1,−1, 1]

lies on the Line 3x+ y − 2z = 0, but [0, 1, 3] does not.

In Euclidean geometry there is a unique line that passes

through any two distinct points, as illustrated on the left of

the figure below. Similarly, in projective geometry two distinct

Points (lines through the origin) lie on a unique Line (plane

through the origin).

We express this observation in the form of a theorem, as

follows.
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Theorem 2. Collinearity Property of RP2 Any two dis-

tinct Points of RP2 lie on a unique Line.

It is sometimes possible to find an equation for the Line that

passes through two distinct Points of RP2 simply by spotting

an equation of the form (2) that is satisfied by the homogeneous

coordinates of both Points.

Example 3. For each of the following pairs of Points, write

down an equation for the Line that passes through them.

(a) [3, 2, 0] and [3, 4, 0]

(b) [1, 2, 1] and [3, 0, 3]

(c) [1, 0, 0] and [0, 0, 1]

Solution: (a) Both the Points have a z -coordinate equal to

0 , so the homogeneous coordinates must satisfy the equation

z = 0. This equation is of the form (2) with a = 0, b = 0 and

c = 1, so it must be the required equation for the Line.

(b) The homogeneous coordinates of both Points satisfy x =

z. This equation is of the form (2) with a = 1, b = 0 and

c = −1. It must therefore be the required equation for the

Line.

(c) The homogeneous coordinates of both Points satisfy y =

0. This equation is of the form (2) with a = 0, b = 1 and c = 0,

so it must be the required equation for the Line. □
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Problem 4. For each of the following pairs of Points, write

down an equation for the Line that passes through them.

(a) [0, 1, 0] and [0, 0, 1] (b) [2, 2, 3] and [3, 3, 7]

Solution: In each case we seek an equation of the form ax +

by + cz = 0 which is satisfied by the homogeneous coordinates

of the given pair of Points.

(a) An equation for the Line through [0, 1, 0] and [0, 0, 1] is

x = 0.

(b) An equation for the Line through [2, 2, 3] and [3, 3, 7] is

x = y. □

But how do we find an equation for a Line through two

given Points in cases where it cannot be found by inspection?

As an example, consider the Points [2,−1, 4] and [1,−1, 1]. We

could certainly substitute the values x = 2, y = −1, z = 4 and

x = 1, y = −1, z = 1 into equation (2), to obtain the pair of

simultaneous equations

2a− b+ 4c = 0,

a− b+ c = 0.

Then subtracting twice the second equation from the first, we

obtain b = −2c. So from the second equation it follows that

a = −3c. If we set c = −1, say, then a = 3 and b = 2, so an
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equation for the Line is

3x+ 2y − z = 0

In this case the calculations are fairly straightforward, but there

is an alternative method that is often simpler. Notice that

the Line in RP2 through the Points [2,−1, 4] and [1,−1, 1] is

the Euclidean plane in R3 that contains the position vectors

of the points (2,−1, 4) and (1,−1, 1) in R3. A point (x, y, z)

lies in this plane if and only if the vector (x, y, z) is a linear

combination of the vectors (2,−1, 4) and (1,−1, 1); in other

words, if and only if the vectors (x, y, z), (2,−1, 4) and (1,−1, 1)

are linearly dependent.

But three vectors in R3 are linearly dependent if and only if

the 3×3 determinant that has these vectors as its rows is zero.

It follows that (x, y, z) lies in the plane containing the position

vectors (2,−1, 4) and (1,−1, 1) if and only if∣∣∣∣∣∣∣∣
x y z

2 −1 4

1 −1 1

∣∣∣∣∣∣∣∣ = 0.

Translating this statement back into a statement concerning

RP2, we deduce that the Point [x, y, z] lies on the Line through
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the Points [2,−1, 4] and [1,−1, 1] if and only if∣∣∣∣∣∣∣∣
x y z

2 −1 4

1 −1 1

∣∣∣∣∣∣∣∣ = 0.

Expanding this determinant in terms of the entries in its

first row. we obtain∣∣∣∣∣∣∣∣
x y z

2 −1 4

1 −1 1

∣∣∣∣∣∣∣∣ = x

∣∣∣∣∣ −1 4

−1 1

∣∣∣∣∣− y

∣∣∣∣∣ 2 4

1 1

∣∣∣∣∣+ z

∣∣∣∣∣ 2 −1

1 −1

∣∣∣∣∣
= 3x+ 2y − z

Hence an equation for the required Line in RP⊭ is

3x+ 2y − z = 0 (3)

Remark

It is always sensible to check your arithmetic by checking

that the two given Points actually lie on the Line that you

have found. For instance, the answer above is correct, since

equation (3) is a homogeneous linear equation in x, y and z,

and the equation is satisfied by x = 2, y = −1, z = 4 and by

x = 1, y = −1, z = 1.

We may summarize the above method in the form of a strat-
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egy, as follows.

Strategy. To determine an equation for the Line in RP2

through the Points [d, c, f ] and [g, h, k] :

1. write down the equation∣∣∣∣∣∣∣∣
x y z

d e f

g h k

∣∣∣∣∣∣∣∣ = 0

2. expand the determinant in terms of the entries in its

first row to obtain the required equation in the form ax+

by + cz = 0.

Example 4. Find an equation for the Line that passes through

the Points [1, 2, 3] and [2,−1, 4].

Solution: An equation for the Line is∣∣∣∣∣∣∣∣
x y z

1 2 3

2 −1 4

∣∣∣∣∣∣∣∣ = 0

Now∣∣∣∣∣∣∣∣
x y z

1 2 3

2 −1 4

∣∣∣∣∣∣∣∣ = x

∣∣∣∣∣ 2 3

−1 4

∣∣∣∣∣− y

∣∣∣∣∣ 1 3

2 4

∣∣∣∣∣+ z

∣∣∣∣∣ 1 2

2 −1

∣∣∣∣∣
= 11x+ 2y − 5z.
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An equation for the Line is therefore

11x+ 2y − 5z = 0

□

Problem 5. Determine an equation for each of the following

Lines in RP2 :

(a) the Line through the Points [2, 5, 4] and [3, 1, 7];

(b) the Line through the Points [−2,−4, 5] and [3,−2,−4].

Solution: We use the strategy for determining an equation for

the Line through two given Points given in Subsection 3.2.2.

(a) An equation for the Line through the Points [2, 5, 4] and

[3, 1, 7] is ∣∣∣∣∣∣∣∣
x y z

2 5 4

3 1 7

∣∣∣∣∣∣∣∣ = 0

Now∣∣∣∣∣∣∣∣
x y z

2 5 4

3 1 7

∣∣∣∣∣∣∣∣ = x

∣∣∣∣∣ 5 4

1 7

∣∣∣∣∣− y

∣∣∣∣∣ 2 4

3 7

∣∣∣∣∣+ z

∣∣∣∣∣ 2 5

3 1

∣∣∣∣∣
= 31x− 2y − 13z,
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so an equation for the Line is

31x− 2y − 13z = 0

(b) An equation for the Line through the Points [−2,−4, 5]

and [3,−2,−4] is ∣∣∣∣∣∣∣∣
x y z

−2 −4 5

3 −2 −4

∣∣∣∣∣∣∣∣ = 0

Now∣∣∣∣∣∣∣∣
x y z

−2 −4 5

3 −2 −4

∣∣∣∣∣∣∣∣ = x

∣∣∣∣∣ −4 5

−2 −4

∣∣∣∣∣− y

∣∣∣∣∣ −2 5

3 −4

∣∣∣∣∣+ z

∣∣∣∣∣ −2 −4

3 −2

∣∣∣∣∣
= 26x+ 7y + 16z

so an equation for the Line is

26x+ 7y + 16z = 0

□

A similar technique can be used to check whether

three given Points are collinear. Indeed, three Points

[a, b, c], [d, e, f ], [g, h, k] are collinear if and only if the position

vectors of the points (a, b, c), (d, e, f), (g, h, k) are linearly de-

pendent; that is, if and only if
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∣∣∣∣∣∣∣∣
a b c

d e f

g h k

∣∣∣∣∣∣∣∣ = 0

Example 5. Determine whether the Points [2, 1, 3], [1, 2, 1] and

[−1, 4,−3] are collinear.

Solution: We have∣∣∣∣∣∣∣∣
2 1 3

1 2 1

−1 4 −3

∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣ 2 1

4 −3

∣∣∣∣∣− 1

∣∣∣∣∣ 1 1

−1 −3

∣∣∣∣∣+ 3

∣∣∣∣∣ 1 2

−1 4

∣∣∣∣∣
= 2(−6− 4)− (−3 + 1) + 3(4 + 2)

= −20 + 2 + 18

= 0.

Since this is zero it follows that [2, 1, 3], [1, 2, 1] and [−1, 4,−3]

are collinear. □

We summarize the method of Example 5 in the following

strategy.

Strategy. To determine whether three Points

[a, b, c], [d, e, f ], [g, h, k] are collinear:

1. evaluate the determinant

∣∣∣∣∣∣∣∣
a b c

d e f

g h k

∣∣∣∣∣∣∣∣;
2. the Points [a, b, c], [d, e, f ], [g, h, k] are collinear if and
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only if this determinant is zero.

Problem 6. Determine whether the following sets of Points

are collinear.

(a) [1, 2, 3], [1, 1,−2], [2, 1,−9] (b)

[1, 2,−1], [2, 1, 0], [0,−1, 3]

Solution: We use the strategy for deciding whether three

Points are collinear given in Subsection 3.2.2.

(a) The Points [1, 2, 3], [1, 1,−2] and [2, 1,−9] are collinear

if and only if ∣∣∣∣∣∣∣∣
1 2 3

1 1 −2

2 1 −9

∣∣∣∣∣∣∣∣ = 0

Now∣∣∣∣∣∣∣∣
1 2 3

1 1 −2

2 1 −9

∣∣∣∣∣∣∣∣ = 1

∣∣∣∣∣ 1 −2

1 −9

∣∣∣∣∣− 2

∣∣∣∣∣ 1 −2

2 −9

∣∣∣∣∣+ 3

∣∣∣∣∣ 1 1

2 1

∣∣∣∣∣
= 1(−9 + 2)− 2(−9 + 4) + 3(1− 2)

= −7 + 10− 3

= 0.

It follows that the three given Points are collinear.

(b) The Points [1, 2,−1], [2, 1, 0] and [0,−1, 3] are collinear if

258



and only if ∣∣∣∣∣∣∣∣
1 2 −1

2 1 0

0 −1 3

∣∣∣∣∣∣∣∣ = 0

Now∣∣∣∣∣∣∣∣
1 2 −1

2 1 0

0 −1 3

∣∣∣∣∣∣∣∣ = 1

∣∣∣∣∣ 1 0

−1 3

∣∣∣∣∣− 2

∣∣∣∣∣ 2 0

0 3

∣∣∣∣∣− 1

∣∣∣∣∣ 2 1

0 −1

∣∣∣∣∣
= 1(3− 0)− 2(6− 0)− 1(−2− 0)

= 3− 12 + 2

= −7 ̸= 0

It follows that the three given Points are not collinear.

□

Before rushing to solve a problem using determinants, you

should always stop to see if you can solve the problem more eas-

ily by inspection. For example, suppose that you are asked to

check whether the Points [1, 0, 0], [0, 1, 0], [1, 1, 1] are collinear.

Clearly, [1, 0, 0] and [0, 1, 0] lie on the Line z = 0, whereas

[1, 1, 1] does not, so the Points are not collinear.

Problem 7. Verify that no three of the Points [1, 0, 0], [0, 1, 0]

[0, 0, 1] and [1, 1, 1] are collinear.

Solution: We have already shown that [1, 0, 0], [0, 1, 0], [1, 1, 1]

are not collinear, so this leaves three other cases to consider.
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First we check that [1, 0, 0], [0, 0, 1], [1, 1, 1] are not collinear.

This follows because [1, 0, 0] and [0, 0, 1] lie on the Line y = 0,

whereas [1, 1, 1] does not.

Next we check that [0, 1, 0], [0, 0, 1], [1, 1, 1] are not collinear.

This follows because [0, 1, 0] and [0, 0, 1] lie on the Line x = 0,

whereas [1, 1, 1] does not.

Finally we check that [1, 0, 0], [0, 1, 0], [0, 0, 1] are not

collinear. This follows because [1, 0, 0], [0, 1, 0] lie on the Line

z = 0, whereas [0, 0, 1] does not. □

The Points that you considered in Problem 7 play an im-

portant part in our development of the theory of projective

geometry, so we give them special names.

Definition. The Points [1, 0, 0], [0, 1, 0], [0, 0, 1] are known

as the triangle of reference. The Point [1, 1, 1] is called the

unit Point.

Next, observe that any two distinct Lines necessarily meet

at a unique Point. Indeed, a Line in RP2 is simply a plane

in R3 that passes through the origin, and two distinct planes

through the origin of R3 must intersect in a unique Euclidean

line through the origin; that is, in a Point. This is very different

to the situation in Euclidean geometry where parallel lines do

not meet.
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Theorem 3. Incidence Property of RP2 Any two distinct

Lines in RP2 intersect in a unique Point of RP2

We can determine the Point of intersection of two Lines

simply by solving the equations of the two Lines as a pair of

simultaneous equations.

Example 6. Determine the Point of intersection of the Lines

in RP2 with equations x+ 6y − 5z = 0 and x− 2y + z = 0.

Solution: At the Point of intersection [x, y, z] of the two Lines,

we have
x+ 6y − 5z = 0

x− 2y + z = 0

Subtracting the second equation from the first, we obtain

8y − 6z = 0

so that y = 3
4
z. Substituting this into the second equation, we

obtain x = 1
2
z.

It follows that the Point of intersection has homogeneous co-

ordinates
[
1
2
z, 3

4
z, z
]
which we can rewrite in the form

[
1
2
, 3
4
, 1
]

or [2, 3, 4]. □

Problem 8. Determine the Point of intersection of each of the

following pairs of Lines in RP2 :

(a) the Lines with equations x−y−z = 0 and x+5y+2z = 0;

261



(b) the Lines with equations x+2y−z = 0 and 2x+y−4z =

0.

Solution:

(a) At the Point of intersection [x, y, z] of the two Lines, we

have

x− y − z = 0, and (∗)

x+ 5y + 2z = 0 (∗∗)

Subtracting equation (∗) from equation (∗∗), we obtain

6y + 3z = 0, so z = −2y

Next, substituting −2y in place of z in equation (∗), we
obtain x− y + 2y = 0, so x = −y.

It follows that the homogeneous coordinates of the Point

of intersection are [−y, y,−2y] (where y ̸= 0 ), which we

may rewrite equivalently as [−1, 1,−2]

(b) At the Point of intersection [x, y, z] of the two Lines, we

have

x+ 2y − z = 0, and (a)

2x+ y − 4z = 0 (b)

Subtracting twice equation (a) from equation (b), we ob-

tain −3y − 2z = 0, so y = −2
3
z.
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Next, substituting −2
3
z in place of y in equation (a), we

obtain x− 4
3
z − z = 0, so x = 7

3
z.

It follows that the homogeneous coordinates of the Point

of intersection are
[
7
3
z,−2

3
z, z
]
( where z ̸= 0), which we

may rewrite equivalently as [7,−2, 3].

□

Problem 9. Determine the Point of RP2 at which the Line

through the Points [1, 2,−3] and [2,−1, 0] meets the Line

through the Points [1, 0,−1] and [1, 1, 1].

Solution: First, we find equations for the two Lines, using the

determinant formula.

An equation for the Line through the Points [1, 2,−3] and

[2,−1, 0] is ∣∣∣∣∣∣∣∣
x y z

1 2 −3

2 −1 0

∣∣∣∣∣∣∣∣ = 0

Now∣∣∣∣∣∣∣∣
x y z

1 2 −3

2 −1 0

∣∣∣∣∣∣∣∣ = x

∣∣∣∣∣ 2 −3

−1 0

∣∣∣∣∣− y

∣∣∣∣∣ 1 −3

2 0

∣∣∣∣∣+ z

∣∣∣∣∣ 1 2

2 −1

∣∣∣∣∣
= x(0− 3)− y(0 + 6) + z(−1− 4)

= −3x− 6y − 5z.
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Hence an equation for the Line may be written as

3x+ 6y + 5z = 0 (i)

Next, an equation for the Line through the Points [1, 0,−1] and

[1, 1, 1] is ∣∣∣∣∣∣∣∣
x y z

1 0 −1

1 1 1

∣∣∣∣∣∣∣∣ = 0

Now∣∣∣∣∣∣∣∣
x y z

1 0 −1

1 1 1

∣∣∣∣∣∣∣∣ = x

∣∣∣∣∣ 0 −1

1 1

∣∣∣∣∣− y

∣∣∣∣∣ 1 −1

1 1

∣∣∣∣∣+ z

∣∣∣∣∣ 1 0

1 1

∣∣∣∣∣
= x(0 + 1)− y(1 + 1) + z(1− 0)

= x− 2y + z

Hence an equation for the Line may be written as

x− 2y + z = 0 (ii)

At the Point of intersection [x, y, z] of the two Lines, both equa-

tions (i) and (ii) hold.

Adding three times equation (ii) to equation (i), we obtain

6x + 8z = 0, so z = −3
4
x. Next, substituting z = −3

4
x into

equation (ii), we obtain x− 2y − 3
4
x = 0, so y = 1

8
x

Hence the homogeneous coordinates for the Point of inter-
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section of the two Lines are
[
x, 1

8
x,−3

4
x
]
( where x ̸= 0), or,

equivalently, [8, 1,−6]. □

In some cases we can write down the Point at which two

Lines intersect without having to solve any equations at all.

For example, the Lines with equations x = 0 and y = 0 clearly

meet at the Point [0, 0, 1].

Problem 10. Determine the Point of RP2 at which the Line

through the Points [1, 0, 0] and [0, 1, 0] meets the Line through

the Points [0, 0, 1] and [1, 1, 1].

Solution: In this particular case, the homogeneous coordi-

nates of the Points are particularly simple, so we can write

down equations for the two Lines without using determinants.

An equation for the Line through the Points [1, 0, 0] and

[0, 1, 0] is z = 0 (since this is of the right form, and passes

through the two Points).

An equation for the Line through the Points [0, 0, 1] and

[1, 1, 1] is x = y (since this is of the right form, and passes

through the two Points).

The two Lines meet where z = 0 and x = y, so the homo-

geneous coordinates for their Point of intersection are [x, x, 0]

(where x ̸= 0 ), or, equivalently, [1, 1, 0]. □
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3.2.3 Embedding Planes

So far we have used three-dimensional space to develop the

theory of projective geometry. In practice, however, we want

to use projective geometry to study two-dimensional figures

in a plane. In order to do this, we now investigate a way of

associating figures in a plane with figures in RP2, and vice

versa.

Suppose that a plane π contains a figure F . We can place π

into R3, making sure that it does not pass through the origin,

and then construct a corresponding projective figure by draw-

ing in all the Points of RP2 that pass through the points of

F . For example, if F is the triangle shown on the left below,

then the corresponding projective figure is a double triangular

pyramid. Note that if we change the position of π in R3, we

obtain a different projective figure corresponding to F .

Conversely, suppose that we start with a projective figure

F. The corresponding Euclidean figure in π consists of the Eu-
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clidean points where the Points of F pierce π. For example, if F

is a double cone whose axis is at right angles to the embedding

plane, as shown on the right above, then the corresponding Eu-

clidean figure is a circle. Note that if we change the position of

π in R3, we obtain a different plane figure corresponding to F .

This correspondence between projective figures and Eu-

clidean figures works well provided that each Point of the pro-

jective figure pierces the plane π, as shown in the margin. Un-

fortunately, any Point of RP2 that consists of a line through

the origin parallel to π does not pierce π, and so cannot be

associated with a point of π. Such a Point is called an ideal

Point for π

All the ideal Points for π lie on a plane through O parallel

to π. This plane is a projective line known as the ideal Line for

π.
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How can we represent a projective figure on π if the figure

includes some of the ideal Points for π ? As a simple example,

consider the Line illustrated in the margin. This is a projective

figure which intersects π in a line ℓ. Every Point of the Line

pierces the embedding plane at a point of ℓ except for the ideal

Point P which cannot be represented on π. In order to represent

the Line completely, we need not only the line ℓ but also the

ideal Point P. In other words, the Line is represented by ℓ∪{P}.

In general, a projective figure can be represented by a figure in

π provided that we are prepared to include a subset of Points

taken from the ideal Line for π. In order to allow for these ad-

ditional ideal Points, we introduce the concept of an embedding

plane.

Definition. An embedding plane is a plane, π, which does

not pass through the origin, together with the set of all

ideal Points for π. The plane in R3 with equation z = 1 is

called the standard embedding plane. The mapping of RP2
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into the standard embedding plane is called the standard

embedding of RP2

We may summarize the above discussion by saying that for

a given embedding plane, every projective figure in RP2 corre-

sponds to a figure in the embedding plane, and vice versa. The

figure in the embedding plane may include some ideal Points

but is otherwise a Euclidean figure.

If two embedding planes are parallel to each other, the same

Points of RP2 correspond to ideal Points of the embeddings;

whereas, if the embed- ding planes are not parallel, different

Points of RP2 correspond to ideal Points of the two embedding

planes.

Once we have represented a projective figure in an em-

bedding plane, we can investigate the relationship between its

Points and Lines without having to refer to three-dimensional

space at all. For example, consider the representation of the

triangle of reference and unit Point on the embedding plane

x + y+ z = 1, shown on the left below. If we extract the em-

bedding plane from R3, as shown on the right, we can use the

algebraic theory developed earlier to write down an equation

for the Line through any two given Points, without reference

to R3.
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Similarly, we can use the algebraic techniques to calculate

the homogeneous coordinates of the Point of intersection of any

two given Lines.

Problem 11. On the right-hand diagram above, insert the

homogeneous coordinates of the Points where the Lines through

[1, 1, 1] meet the sides of the triangle of reference.

Solution: In Problem 10 we found that the Point of intersec-

tion of z = 0 and x = y is [1, 1, 0]. Similarly, the Point of

intersection of y = 0

and z = x is [x, 0, x] or [1, 0, 1], and the Point of intersection

of x = 0 and y = z is [0, z, z] or [0, 1, 1]. □

Any plane may be used as an embedding plane provided

that it does not pass through the origin. For example, if we

take π to be the plane z = −1, then the ideal Line for π has

equation z = 0, and the ideal Points are Points of the form

[a, b, 0], where a and b are not both zero. Any other Point

[a, b, c] has c ̸= 0 and can therefore be represented in π by the

Euclidean point (−a/c,−b/c,−1).
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Problem 12. Let π be the embedding plane y = −1. Describe

the ideal Points for π, and specify the Euclidean point of π

which represents the Point [2, 4, 6].

Solution: The ideal Points for π consist of lines through the

origin of R3 that are parallel to π. These are the Points that

lie on the ideal Line y = 0.

The Euclidean point of π which corresponds to the Point

[2, 4, 6] is that multiple of (2, 4, 6) which lies on the plane y =

−1. That is, −1
4
(2, 4, 6) =

(
−1

2
,−1,−3

2

)
□

Although we can choose any embedding plane to represent

figures of RP2, the representation does depend on the choice.

For example, suppose that π1 is the embedding plane y = −1,

and that π2 is the embedding plane z = −1. Now consider

the projective figure which consists of two Lines ℓ1 and ℓ2 with

equations x = −z and x = z, respectively. These Lines inter-

sect at the Point [0, 1, 0]

On the embedding plane π1 the Lines ℓ1 and ℓ2 are rep-
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resented by two lines that can be seen to meet at the point

corresponding to [0, 1, 0]. However, on the embedding plane π2

the Point of intersection [0, 1, 0] is an ideal Point and so the

Lines ℓ1 and ℓ2 are represented by parallel lines that do not

appear to meet. The contrast between the two representations

of ℓ1 and ℓ2 is particularly striking if we extract the two em-

bedding planes from R3 and lay them side by side, as follows.

This example illustrates that Lines which appear to be par-

allel in one embedding plane may not appear to be parallel

in another embedding plane. In the next section you will see

that the transformations of projective geometry are chosen so

as to ensure that the projective properties of a figure are unaf-

fected by the choice of embedding plane. Since parallelism does

depend on the choice of cmbedding planc, it cannot be a pro-

jcctive propcrty, so the concept of parallel Lines is meaningless

in projective geometry.
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3.2.4 An equivalent definition of Projective

Geometry

In our work on projective geometry, we have used Euclidean

points in a plane in R3 to construct the projective points

(Points) of the geometry RP2, homogeneous coordinates for

those Points, and projective lines (Lines).

Equivalently, we could have defined RP2 as the set of or-

dered triples [a, b, c], where a, b, c are real and not all zero, with

the convention that we regard [ λa, λb, λc] and [a, b, c] (where

λ ̸= 0 ) as the same Point in the geometry. We would then have

defined projective lines (Lines) as the set of points [x, y, z] in

RP2 that satisfy an equation of the form ax + by + cz = 0,

where a, b, c are real and not all zero, Then we would continue

to develop the theory of projective geometry in the same way

as we have done here.

However, we chose to start our work by looking at a model

of RP2 obtained by using an embedding plane π in R3 that does

not pass through the origin. We modeled the projective points

[a, b, c] by the Euclidean lines through the origin and the corre-

sponding Euclidean points (a, b, c), plus ’points at infinity’ (the

ideal Points); and we modeled the projective lines by Euclidean

planes through the origin, For convenience, we chose often to

use Euclidean points (a, b, c) on a given embedding plane to

describe the Euclidean model.
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The formal method of defining projective geometry, though,

is less intuitive than the description motivated by the R3 model!

3.3 Projective Transformations

3.3.1 The Group of Projective Transforma-

tions

By now you should be familiar with the idea that a ge-

ometry consists of a space of points together with a group of

transformations which act on that space.

Having introduced the space of projective points RP2 in

Section 3.2, we are now in a position to describe the trans-

formations of RP2. First we shall define the transformations

algebraically, then we give a geometrical interpretation of the

transformations using the ideas of perspectivity introduced in

Section 3.1, and finally meet the Fundamental Theorem of Pro-

jective Geometry.

Recall that a point of R3 (other than the origin) on an

embedding plane π (that does not pass through the origin)

has coordinates x = (x, y, z) with respect to the standard ba-

sis of R3, and homogeneous coordinates of the corresponding

Point [x] in RP2 (which represents the points [λx : λ ⊂ R]) are
[λx, λy, λz] for some real λ ̸= 0. Since the Points of RP2 are

just lines through the origin of R3, we need a group of transfor-
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mations that map the lines through the origin of R3 onto the

lines through the origin of R3. Suitable transformations of R3

that do this are the invertible linear transformations.

If A is the matrix of an invertible linear transformation

of R3 to itself, the transformation maps points x = (x, y, z)

of R3 to points Ax of R3; then the projective transformation

with matrix A maps Points [ x] of RP2 to Points [Ax] of RP2.

This suggests that we define the transformations of projective

geometry as follows.

Definition. A projective transformation of RP2 is a func-

tion t : RP2 → RP2 of the form

t : [x] 7→ [Ax]

where A is an invertible 3 × 3 matrix. We say that A

is a matrix associated with t. The set of all projective

transformations of RP2 is denoted by P (2).

Example 1. Show that the function t : RP2 → RP2 defined

by

t : [x, y, z] 7→ [2x+ z,−x+ 2y − 3z, x− y + 5z]

is a projective transformation, and find the image of [1, 2, 3]

under t.

Solution: The transformation t has the form t : [x] 7→ [Ax],
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where x = (x, y, z) and

A =


2 0 1

−1 2 −3

1 −1 5


Now

det A =

∣∣∣∣∣∣∣∣
2 0 1

−1 2 −3

1 −1 5

∣∣∣∣∣∣∣∣
= 2(10− 3)− 0 + (1− 2)

= 13 ̸= 0

So A is invertible. It follows that t is a projective transforma-

tion. We have

t([1, 2, 3]) = [2 + 3,−1 + 4− 9, 1− 2 + 15] = [5,−6, 14] .

□

Problem 1. Decide which of the following functions t from

RP2 to itself are projective transformations. For those that

are projective transformations, write down a matrix associated

with t.

(a) t : [x, y, z] 7→ [−2y + 3z,−x+ 5y − z,−3x]

(b) t : [x, y, z] 7→ [x− 7y + 4z,−x+ 5y − z, x− 9y + 7z]

(c) t : [x, y, z] 7→ [x− 1 + z, 2y − 4z + 5, 2x]
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Solution:

(a) The mapping t : [x, y, z] 7→ [−2y + 3z,−x+ 5y − z,−3x]

can be expressed in the form [x] 7→ [Ax], where

A =


0 −2 3

−1 5 −1

−3 0 0



Now

detA =

∣∣∣∣∣∣∣∣
0 −2 3

−1 5 −1

−3 0 0

∣∣∣∣∣∣∣∣
= 0

∣∣∣∣∣ 5 −1

0 0

∣∣∣∣∣− (−2)

∣∣∣∣∣ −1 −1

−3 0

∣∣∣∣∣+ 3

∣∣∣∣∣ −1 5

−3 0

∣∣∣∣∣
= 0 + 2× (−3) + 3× 15

= 39 ̸= 0,

so A is invertible. It follows that t is projective transfor-

mation, and that A is a matrix associated with t.

(b) The mapping

t : [x, y, z] 7→ [x− 7y + 4z,−x+ 5y − z, x− 9y + 7z]
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can be expressed in the form [x] 7→ [Ax] where

A =


1 −7 4

−1 5 −1

1 −9 7


Now

detA =

∣∣∣∣∣∣∣∣
1 −7 4

−1 5 −1

1 −9 7

∣∣∣∣∣∣∣∣
= 1

∣∣∣∣∣ 5 −1

−9 7

∣∣∣∣∣+ 7

∣∣∣∣∣ −1 −1

1 7

∣∣∣∣∣+ 4

∣∣∣∣∣ −1 5

1 −9

∣∣∣∣∣
= 1× 26 + 7× (−6) + 4× 4

= 0,

so A is not invertible. It follows that t is not a projective

transformation.

(c) The mapping

t : [x, y, z] 7→ [x− 1 + z, 2y − 4z + 5, 2x]

cannot be expressed in the form [x] 7→ [Ax], where A is

a 3 × 3 matrix whose entries are real numbers. Hence t

cannot be a projective transformation.

□
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Problem 2. Let t be the projcctive transformation associated

with the matrix.

A =


1 1 −1

−1 −2 1

4 −3 4


Determine the image under t of each of the following Points.

(a) [1, 2,−1] (b) [1, 0, 0] (c) [0, 1, 0]

(d) [0, 0, 1] (e) [1, 1, 1]

Solution:

(a) The image of the Point [1, 2,−1] under t is given by


1 1 −1

−1 −2 1

4 −3 4




1

2

−1


 =




4

−6

−6




that is, the Point [4,−6,−6] = [−2, 3, 3]

(b) The image of the Point [1, 0, 0] under t is given by


1 1 −1

−1 −2 1

4 −3 4




1

0

0


 =




1

−1

4




that is, the Point [1,−1, 4].
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(c) The image of the Point [0, 1, 0] under t is given by


1 1 −1

−1 −2 1

4 −3 4




0

1

0


 =




1

−2

−3




that is, the Point [1,−2,−3].

(d) The image of the Point [0, 0, 1] under t is given by


1 1 −1

−1 −2 1

4 −3 4




0

0

1


 =




−1

1

4




that is, the Point [−1, 1, 4].

(e) The image of the Point [1, 1, 1] under t is given by


1 1 −1

−1 −2 1

4 −3 4




1

1

1


 =




1

−2

5




that is the Point [1,−2, 5].

□

Since we can multiply the homogeneous coordinates of

Points in RP2 by any non-zero real number λ without alter-

ing the Point itself, it follows that if A is a matrix associated

with a particular projective transformation then so is the ma-
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trix λA, provided that λ ̸= 0. For example, another matrix

associated with the transformation in Example 1 is

B =


−4 0 −2

2 −4 6

−2 2 −10


for we have B = −2A.

Problem 3. Write down a matrix with top left-hand entry 1
2

which is associated with the transformation in Example 1 .

Solution: Since the matrix A which represents the transfor-

mation in Example 1 in Subsection 3.3.1 has 2 as its top left-

hand entry, we obtain the required matrix by dividing each

entry of A by 4. This gives the matrix
1
2

0 1
4

−1
4

1
2

−3
4

1
4

−1
4

5
4


□

Before we can use the projective transformations to de-

fine projective geometry, we must first check that they form

a group.

Theorem 1. The set of projective transformations P (2)
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forms a group under the operation of composition of func-

tions.

Proof: We check that the four group axioms hold.

G1 CLOSURE: Let t1 and t2 be projective transformations

defined by

t1 : [x] 7→ [A1x] and t2 : [x] 7→ [A2x]

where A1 and A2 are invertible 3× 3 matrices. Then

t1 ◦ t2([x]) = t1 (t2([x]))

= t1 ([A2x])

= [(A1A2)x] .

Since A1 and A2 are invertible, it follows that A1A2 is

invertible. So by definition t1 ◦ t2 is a projective transfor-

mation.

G2 IDENTITY: Let i : RP2 → RP2 be the transformation

defined by i : [x] 7→ [Ix] where I is the 3 × 3 identity

matrix; this is a projective transformation, since I is in-

vertible.

Let t : RP2 → RP2 be an arbitrary projective transfor-

mation, defined by t : [x] 7→ [Ax], for some invertible 3

×3 matrix A. Then for any [x] ∈ RP2

t ◦ i([x]) = [A(Ix)] = [Ax]
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and

i ◦ t([x]) = [I(Ax)] = [Ax]

Thus t◦i = i◦t = t. Hence i is the identity transformation.

G3 INVERSES: Let t : RP2 → RP2 be an arbitrary projec-

tive transformation defined by

t : [x] 7→ [Ax]

for some invertible 3 × 3 matrix A. Then we can define

another projective transformation t′ : RP2 → RP2 by

t′ : [x] 7→
[
A−1x

]
Now, for each [x] ∈ RP2, we have

t ◦ t′([x]) = t
([
A−1x

])
=
[
A
(
A−1x

)]
= [x]

and

t′ ◦ t([x]) = t′([Ax]) =
[
A−1(Ax)

]
= [x]

Thus t′ is an inverse for t.

G4 ASSOCIATIVITY: Composition of functions is always

associative.

It follows that the set of projective transformations P (2) forms

a group. □

The above proof shows that if t1 and t2 are projective trans-
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formations with associated matrices A1 and A2 , respectively,

then t1 ◦ t2 is a projective transformation with an associated

matrix A1A2 . We therefore have the following strategy for

composing projective transformations.

Strategy. To compose two projective transformations t1

and t2 :

1. write down matrices A1 and A2 associated with t1

and t2 .

2. calculate A1A2 .

3. write down the composite t1 ◦ t2 with which A1A2 is

associated.

The proof also shows that if t is a projective transformation

with an associated matrix A, then t−1 is a projective trans-

formation with associated matrix A−1. We therefore have the

following strategy for calculating the inverse of a projective

transformation.

Strategy. To find the inverse of a projective transforma-

tion t :

1. write down a matrix A associated with t.

2. calculate A−1.

3. write down the inverse t−1 with which A−1 is asso-

ciated.
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Example 2. Let t1 and t2 be projective transformations de-

fined by

t1 : [x, y, z] 7→ [x+ z, x+ y + 3z,−2x+ z]

t2 : [x, y, z] 7→ [2x, x+ y + z, 4x+ 2y]

Determine the projective transformations t2 ◦ t1 and t−1
1
.

Solution: The transformations t1 and t2 have associated ma-

trices

A1 =


1 0 1

1 1 3

−2 0 1

 and A2 =


2 0 0

1 1 1

4 2 0


respectively. It follows that t2 ◦ t1 has an associated matrix

A2A1 =


2 0 0

1 1 1

4 2 0




1 0 1

1 1 3

−2 0 1

 =


2 0 2

0 1 5

6 2 10


so

t2 ◦ t1 : [x, y, z] 7→ [2x+ 2z, y + 5z, 6x+ 2y + 10z]

285



Next, t−1
1

has an associated matrix A−1
1

given by

A−1
1

=


1
3

0 −1
3

−7
3

1 −2
3

2
3

0 1
3


a simpler matrix associated with t−1

1
is then

1 0 −1

−7 3 −2

2 0 1


so

t−1
1

: [x, y, z] 7→ [x− z,−7x+ 3y − 2z, 2x+ z]

□

Problem 4. Let t1 and t2 be projective transformations defined

by

t1 : [x, y, z] 7→ [2x+ y,−x+ z, y + z]

t2 : [x, y, z] 7→ [5x+ 8y, 3x+ 5y, 2z]

Determine the projective transformations t1 ◦ t2 and t−1
1
.

Solution: Matrices associated with t1 and t2 are

A1 =


2 1 0

−1 0 1

0 1 1

 and A2 =


5 8 0

3 5 0

0 0 2


respectively. It follows that a matrix associated with the pro-
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jective transformation t1 ◦ t2 is A1A2 . Now

A1A2 =


2 1 0

−1 0 1

0 1 1




5 8 0

3 5 0

0 0 2



=


13 21 0

−5 −8 2

3 5 2


so we conclude that t1 ◦ t2 is the transformation

[x, y, z] 7→ [13x+ 21y,−5x− 8y + 2z, 3x+ 5y + 2z]

Next, t−1
1

has an associated matrix A−1
1

given by

A−1
1

=


1 1 −1

−1 −2 2

1 2 −1


The projective transformation t−1

1
is therefore

[x, y, z] 7−→ [x+ y − z,−x− 2y + 2z, x+ 2y − z]

□

Having shown that the set of projective transformations

forms a group under composition of functions, we can now de-

fine projective geometry to be the study of those properties of

figures in RP2 that are preserved by projective transformations.
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Those properties that are preserved by projective transforma-

tions are known as projective properties.

3.3.2 Some Properties of Projective Trans-

formations

We now check two important properties of projective trans-

formations, namely, that they preserve collinearity and inci-

dence.

A Line in RP2 is a plane in R3 that passes through the

origin. It therefore consists of the set of points (x, y, z) of R3

that satisfy an equation of the form

ax+ by + cz = 0

wherc a, b and c arc not all zcro. Wc can writc this condition

cquivalently in the matrix form Lx = 0, where L is the non-zero

row matrix (abc) and x = (xyz)T .

Now let t be a projective transformation defined by t : [x] 7→
[Ax], where A is an invertible 3 × 3 matrix, and let [x] be an

arbitrary Point on the Line Lx = 0. Then the image of [x]

under t is a Point [x′] where x′ = Ax. Since x satisfies the

equation Ix = 0, it follows that x′ satisfies I (A−1x′) = 0, or(
LA−1

)
x′ = 0. Dropping the dash, we conclude that the image
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of the Line Lx = 0 under t is the Line with equation

(
LA−1

)
x = 0

Since the image of a Line in RP2 is a Line, it follows that

collinearity is preserved under a projective transformation.

Notice that if B is any matrix associated with t−1, then B =

λA−1 for some non-zero real number λ, and so
(
LA−1

)
x = 0

if and only if (LB)x = 0. It follows that the image of the

Line can equally well be written as (LB)x = 0. (For instance,

since A−1 = adj(A)/ det(A) so that t−1 also has adj(A) as

an associated matrix, we can express the image of the Line as

(L adj(A))x = 0. )

We therefore summarize the above discussion in the form

of a strategy, as follows.

Strategy. To find the image of a Line

ax+ by + cz = 0

under a projective transformation t : [x] 7→ [AX] :

1. write the equation of the Line in the form Lx = 0,

where L is the matrix (abc);

2. find a matrix B associated with t−1;

3. write down the equation of the image as (LB)x = 0.
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Example 3. Find the image of the Line 2x+y−3z = 0 under

the projective transformation t1 defined by

t1 : [x, y, z] 7→ [x+ z, x+ y + 3z,−2x+ z]

Solution: The equation of the Line can be written in the form

Lx = 0, where

L =
(

2 1 −3
)

In Example 2 we showed that t−1
1

has an associated matrix

B =


1 0 −1

−7 3 −2

2 0 1


So

LB =

 2 1− 3)


1 0 −1

−7 3 −2

2 0 1

 =
(

−11 3− 7
)

It follows that the required image has equation

−11x+ 3y − 7z = 0

□

Problem 5. Find the image of the Line x+ 2y − z = 0 under
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the projective transformation t1 defined by

t1 : [x, y, z] 7→ [2x+ y,−x+ z, y + z]

Solution: The equation of the Line can be written in the form

Lx = 0, where

L =
(

1 2 −1
)

From Problem 4 we know that t−1
1

has an associated matrix

A−1
1

=


1 1 −1

−1 −2 2

1 2 −1


so

LA−1
1

=
(

1 2 −1
)

1 1 −1

−1 −2 2

1 2 −1


=
(

−2 −5 4
)
.

The required image is therefore the Line

−2x− 5y + 4z = 0

□

Next, we consider the incidence property. If two Lines in-

tersect at the Point P , then P lies on both Lines. So if t is a

projective transformation, then t(P ) lies on the images of both
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Lines. It follows that the image under t of the Point of intersec-

tion of the two Lines is the Point of intersection of the images

of the two Lines. In other words, incidence is also preserved

under a projective transformation.

Theorem 2. Collinearity and incidence are both projec-

tive properties.

3.3.3 Fundamental Theorem of Projective

Geometry

In Chapter 2 we discussed the Fundamental Theorem of

Affine Geometry which states that given any two sets of three

non-collinear points of R2 there is a unique affine transforma-

tion which maps the points in one set to the corresponding

points in the other set. So an affine transformation is uniquely

determined by its effect on any given triangle.

In this subsection we explore an analogous result for projec-

tive geometry known as the Fundamental Theorem of Projec-

tive Geometry. We begin by asking you to tackle the following

problem.

Problem 6. Let t1 and t2 be the projective transformations
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with associated matrices

A1 =


−4 −1 1

−3 −2 1

4 2 −1

 and A2 =


−8 −6 −2

−3 4 7

6 0 −4


respectively. Find the images of the Points

[1,−1, 1], [1,−2, 2] and [−1, 2,−1] under t1 and t2 .

Solution: First we consider the images under t1 . The image

of the Point [1,−1, 1] under t1 is


−4 −1 1

−3 −2 1

4 2 −1




1

−1

1


 =




−2

0

1




that is, the Point [−2, 0, 1]. Similarly, the image of the Point

[1,−2, 2] under t1 is


−4 −1 1

−3 −2 1

4 2 −1




1

−2

2


 =




0

3

−2




that is, the Point [0, 3,−2]. Finally, the image of the Point

[−1, 2,−1] under t1 is


−4 −1 1

−3 −2 1

4 2 −1




−1

2

−1


 =




1

−2

1



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that is, the Point [1,−2, 1]. Next, we consider the images under

t2 . The image of the Point [1,−1, 1] under t2 is


−8 −6 −2

−3 4 7

6 0 −4




1

−1

1


 =




−4

0

2




that is, the Point with homogeneous coordinates [−4, 0, 2] or

(equivalently) [−2, 0, 1].

Similarly, the image of the Point [1,−2, 2] under t2 is


−8 −6 −2

−3 4 7

6 0 −4




1

−2

2


 =




0

3

−2




that is, the Point [0, 3,−2]. Finally, the image of the Point

[−1, 2,−1] under t2 is


−8 −6 −2

−3 4 7

6 0 −4




−1

2

−1


 =




−2

4

−2




that is, the Point with homogeneous coordinates [−2, 4,−2] or

(equivalently) [1,−2, 1] □

You should have found that both of the projective trans-

formations t1 and t2 map the Points [1,−1, 1], [1,−2, 2] and

[−1, 2,−1] to the Points [−2, 0, 1], [0, 3,−2] and [1,−2, 1], re-

294



spectively. Notice, however, that t1 and t2 are not the same

projective transformation, since their matrices are not multi-

ples of each other. It follows that, unlike affine transforma-

tions, projective transformations are not uniquely determined

by their effect on three (non-collinear) Points.

This raises the question as to whether it is possible to spec-

ify how many Points are required to determine a projective

transformation. According to the Fundamental Theorem of

Projective Geometry, the answer is four. In fact the theorem

states that given any two sets of four Points, no three of which

are collinear, there is a unique projective transformation that

maps the Points in one set to the corresponding Points in the

second set. Thus, in projective geometry a transformation is

uniquely determined by its effect on a quadrilateral.

To understand why a triangle is insufficient to determine

a projective transformation uniquely, consider what happens

when we look for a projective transformation that maps the

triangle of reference to three given non-collinear Points.

Example 4. Find a projective transformation t that maps the

Points [1, 0, 0], [0, 1, 0] and [0, 0, 1] to the non collinear Points

[1,−1, 1], [1,−2, 2] and [−1, 2,−1], respectively.

Solution: Let A be a matrix associated with t, and let the
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first column of A be


a

b

c

. Then since




a ∗ ∗
b ∗ ∗
c ∗ ∗




1

0

0


 =




a

b

c


 =




1

−1

1




it follows that we may take


1

−1

1

 as the first column of A.

Similarly, since




∗ d ∗
∗ e ∗
∗ f ∗




0

1

0


 =




d

e

f


 =




1

−2

2




Projective Transformations and


∗ ∗ g

∗ ∗ h

∗ ∗ k




0

0

1


 =




g

h

k


 =




−1

2

−1




it follows that a suitahle transformation is given hy t : [x] 7→
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[Ax] where

A =


1 1 −1

−1 −2 2

1 2 −1

 .

□

This example illustrates the fact that we can always find a

projective transformation t : [x] 7→ [Ax] which maps the trian-

gle of reference to three non-collinear Points simply by writing

the homogeneous coordinates of the Points as the columns of

A. Notice, however, that the transformation we obtain is not

unique. Indeed, if the Points [1,−1, 1], [1,−2, 2] and [−1, 2,−1]

in Example 4 are rewritten in the form [u,−u, u], [v,−2v, 2v]

and [−w, 2w,−w], for some non-zero real numbers u, v, w, then

the matrix becumes

A =


u v −w

−u −2v 2w

u 2v −w


The corresponding transformation t : [x] 7→ [Ax] still maps

the triangle of reference to the Points [1,−1, 1], [1,−2, 2] and

[−1, 2,−1], as required, but the effect that t has on the other

Points of RP2 depends on the numbers u, v and w.

So if we wish to specify t uniquely we need to assign par-

ticular values to u, v and w. We can do this by specifying the

effect that t has on a fourth Point [1, 1, 1].
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Example 5. Find the projective transformation t which maps

the Points [1, 0, 0], [0, 1, 0], [0, 0, 1] and [1, 1, 1] to the Points

[1,−1, 1], [1,−2, 2], [−1, 2,−1] and [0, 1, 2], respectively.

Solution: If A is the matrix associated with t, then its

columns must be multiples of the homogeneous coordinates

[1,−1, 1], [1,−2, 2], [−1, 2,−1]; that is,

A =


u v −w

−u −2v 2w

u 2v −w


Also, to ensure that t maps [1, 1, 1] to [0, 1, 2] we must choose

u, v and w so that


u v −w

−u −2v 2w

u 2v −w




1

1

1


 =




0

1

2




We can do this by solving the equations

u+ v − w = 0,

−u− 2v + 2w = 1,

u+ 2v − w = 2.

Adding the second and third equations we obtain w = 3. If

we then subtract the first equation from the third we obtain

v = 2. Finally, if we substitute v and w into the first equation

298



we obtain u = 1. The required projective transformation is

therefore given by t : [x] 7→ [Ax], where

A =


1 2 −3

−1 −4 6

1 4 −3


□

It is natural to ask whether the method used in this example

can be adapted to find a projcetive transformation which maps

the triangle of refcrence and unit Point to any four given Points.

The answer is usually yes, but since collinearity is a projective

property, and since no three of the Points [1, 0, 0], [0, 1, 0], [0,,

0, 1], [1, 1, 1] are collinear, the method must fail if three of the

four given Points lie on a Line. Provided we exclude this pos-

sibility. the answer is yes!

Strategy. To find the projective transformation which

maps

[1, 0, 0] to [a1 , a2 , a3 ]

[0, 1, 0] to [b1 , b2 , b3 ]

[0, 0, 1] to [c1 , c2 , c3 ]

[1, 1, 1] to [d1 , d2 , d3 ]

where

no three of [a1 , a2 , a3 ] , [b1 , b2 , b3 ] , [c1 , c2 , c3 ] , [d1 , d2 , d3 ] are

collinear:
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1. find u, v, w such that
a1u b1v c1w

a2u b2v c2w

a3u b3v c3w




1

1

1

 =


d1

d2

d3


2. write down the required projective transformation in

the form t : [x] 7→ [Ax], where A is any non-zero real

multiple of the matrix
a1u b1v c1w

a2u b2v c2w

a3u b3v c3w



Remark

To see why this strategy always works, notice that we can

rewrite the equation from Step 1 in the form

u


a1

a2

a3

+ v


b1

b2

b3

+ w


c1

c2

c3

 =


d1

d2

d3


From this we can make the following observations.

(a) The equation in Step 1 must have a unique solution for

u, v, w because the required values of u, v and w are sim-

ply the coordinates of (d1 , d2 , d3) with respect to the basis
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of R3 formed from the three linearly independent vectors

(a1 , a2 , a3) , (b1 , b2 , b3) , (c1 , c2 , c3)

(b) The values of u, v and w must all be non-zero, because

otherwise three of

the vectors (a1 , a2 , a3) , (b1 , b2 , b3) , (c1 , c2 , c3) , (d1 , d2 , d3)

would be linearly dependent.

(c) Since the columns of A are non-zero, multiples of the

linearly independent vectors

(a1 , a2 , a3) , (b1 , b2 , b3) , (c1 , c2 , c3) it follows that A is in-

vertible, and hence that t is a projective transformation.

There is no need to check whether any three of the four

given Points are collincar becausc any failure of this condition

will cmerge in the process of applying the strategy. Indeed,

if the equation in Step 1 fails to yield unique non-zero values

for u, v and w, then it must be because three of the Points

(a1 , a2 , a3) , (b1 , b2 , b3) , (c1 , c2 , c3) , (d1 , d2 , d3) lie on a Line.

Problem 7. Use the above strategy to find the projective

transformation which maps the Points [1, 0, 0], [0, 1, 0], [0, 0, 1]

and [1, 1, 1] to the Points:

(a) [−1, 0, 0], [−3, 2, 0], [2, 0, 4] and [1, 2,−5], respectively

(b) [1, 0, 0], [0, 0, 1], [0, 1, 0] and [3, 4, 5], respectively;

(c) [2, 1, 0], [1, 0,−1], [0, 3,−1] and [3,−1, 2], respectively.

Solution: We use the strategy preceding the problem.
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(a) Let A be the matrix
−u −3v 2w

0 2v 0

0 0 4w

 .

We wish to choose u, v, w such that
−u −3v 2w

0 2v 0

0 0 4w




1

1

1

 =


1

2

−5

 ,

that is, 
−u− 3v + 2w

2v

4w

 =


1

2

−5


It follows that w = −5

4
and v = 1. Also,

−u− 3v + 2w = 1, so u = −13

2

Thus

A =


13
2

−3 −5
2

0 2 0

0 0 −5

 .

A simpler matrix for the projective transformation is the
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matrix

2A =


13 −6 −5

0 4 0

0 0 −10

 .

(b) Let A be the matrix
u 0 0

0 0 w

0 v 0

 .

We wish to choose u, v, w such that
u 0 0

0 0 w

0 v 0




1

1

1

 =


3

4

5

 ,

that is, 
u

w

v

 =


3

4

5

 .

It follows that u = 3, v = 5 and w = 4. Thus

A =


3 0 0

0 0 4

0 5 0

 .
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(c) Let A be the matrix
2u v 0

u 0 3w

0 −v −w


We wish to choose u, v, w such that

2u v 0

u 0 3w

0 −v −w




1

1

1

 =


3

−1

2


that is, 

2u+ v

u+ 3w

−v − w

 =


3

−1

2


It follows that

2u+ v = 3 (a)

u+ 3w = −1 (b)

−v − w = 2 (c)

Adding equations (a) and (c) in order to eliminate v, we

obtain

2u− w = 5 (d)

Subtracting equation (d) from twice equation (b) in order

to eliminate u, we obtain 7w = −7 or w = −1
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It follows from equation (d) that u = 2, and from equa-

tion (a) that v = −1. Thus

A =


4 −1 0

2 0 −3

0 1 1


□

Now consider the transformation t1 in Problem 7 (a). The

inverse of this, t−1
1
, is a projective transformation which maps

the Points [−1, 0, 0], [−3, 2, 0] [2, 0, 4] and [1, 2,−5] back to the

triangle of reference and unit Point. So if, after applying this

inverse, we apply the projective transformation t2 in Prob-

lem 7 (c), then the overall effect of the composite t2 ◦ t−1
1

is that of a projective transformation which sends the Points

[−1, 0, 0], [−3, 2, 0], [2, 0, 4] and [1, 2,−5] directly to the Points

[2, 1, 0], [1, 0,−1], [0, 3,−1] and [3,−1, 2], respectively
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In a similar way we can find a projective transformation

which maps any set of four Points to any other set of four

Points. The only constraint is that no three of the Points in

either set can be collinear. In the following statement of the

Fundamental Theorem we express this constraint by requiring

that each of the four sets of Points lie at the vertices of some

quadrilateral, where a quadrilateral is defined as follows. A

quadrilateral is a set of four Points A,B,C and D (no three of

which are collinear), together with the Lines AB,BC,CD and

DA.

Theorem 3. (The Fundamental Theorem of Projec-

tive Geometry) Let ABCD and A′B′C ′D′ be two quadri-

laterals in RP2. Then:

(a) there is a projective transformation t which maps

A to A′, B to B′, C to C ′, D to D′

(b) the projective transformation t is unique.

Proof: According to the strategy above, there is

a projective transformation t1 which maps the Points

[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] to the Points A,B,C,D, respec-

tively. Similarly, there is a projective transformation t2 which

maps the Points [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] to the Points

A′, B′, C ′, D′, respectively.
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(a) The composite t = t2 ◦ t−1
1

is then a projective transfor-

mation which maps A to A′, B to B′, C to C ′, D to D′.

(b) To check uniqueness of t, we first check that the iden-

tity transformation is

the only projective transformation which maps each of

the Points [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] to themselves.

In fact any projective transformation with this property

must have an associated matrix which is some non-zero

multiple of the matrix
u 0 0

0 v 0

0 0 w

 , where


u 0 0

0 v 0

0 0 w




1

1

1

 =


1

1

1

 .

Such a matrix must be (a non-zero multiple of) the iden-

tity matrix, and so the transformation must indeed be

the identity.

307



Next suppose that t and t′ are two projective transforma-

tions which satisfy the conditions of the theorem. Then

the composites t−1
2

◦ t ◦ t1 and t−1
2

◦ t′ - t1 must both

be projective transformations which map each of the Points

[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] to themselves. Since this im-

plies that both composites are equal to the identity, we deduce

that

t−1
2

◦ t ◦ t1 = t−1
2

◦ t′ ◦ t1

If we now compose both sides of this equation with t2 on the left

and with t−1
1

on the right, then we obtain t = t′, as required.

□

The Fundamental Theorem tells us that there is a projective

transformation which maps any given quadrilateral onto any

other given quadrilateral. So we have the following corollary.

Corollary. All quadrilaterals are projective-congruent.

If we actually need to find the projective transformation which

maps one given quadrilateral onto another given quadrilateral,

we simply follow the strategy used to prove part (a) of the

Fundamental Theorem.

Strategy. To determine the projective transformation t

which maps the vertices of the quadrilateral ABCD to the

corresponding vertices of the quadrilateral A′B′C ′D′ :
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1. find the projective transformation t1 which maps the

triangle of reference and unit Point to the Points

A,B,C,D, respectively;

2. find the projective transformation t2 which maps the

triangle of reference and unit Point to the Points

A′, B′, C ′, D′, respectively;

3. calculate t = t2 ◦ t−1
1
.

Example 6. Find the projective transformation t which maps

the Points [1,−1, 2], [1,−2, 1], [5,−1, 2], [1, 0, 1] to the Points

[−1, 3,−2], [−3, 7,−5], [2,−5, 4], [−3, 8,−5], respectively.

Solution: We follow the steps in the above strategy.

(a) Any matrix associated with the projective transformation

t1 which maps the Points [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1]

to the Points [1,−1, 2], [1,−2, 1], [5,−1, 2], [1, 0, 1], re-

spectively, must be a multiple of the matrix
u v 5w

−u −2v −w

2u v 2w

 , where


u v 5w

−u −2v −w

2u v 2w




1

1

1

 =


1

0

1


Solving the equations

u+ v + 5w = 1

−u− 2v − w = 0

2u+ v + 2w = 1
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we obtain u = 1
2
, v = −1

3
, w = 1

6
. So a suitable choice

of matrix for t1 is


1
2

−1
3

5
6

−1
2

2
3

−1
6

1 −1
3

1
3

 , or more simply

A1 =


3 −2 5

−3 4 −1

6 −2 2



(b) Any matrix associated with the projective trans-

formation t2 which maps

the Points [1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1] to the Points

[−1, 3,−2], [−3, 7,−5], [2,−5, 4], [−3, 8,−5], respectively,

must be a multiple of the matrix


−u −3v 2w

3u 7v −5w

−2u −5v 4w

 , where


−u −3v 2w

3u 7v −5w

−2u −5v 4w




1

1

1

 =


−3

8

−5


Solving the equations

−u− 3v + 2w = −3

3u+ 7v − 5w = 8

−2u− 5v + 4w = −5,

we obtain u = 2, v = 1, w = 1. So a suitable choice of

310



matrix for t2 is

A2 =


−2 −3 2

6 7 −5

−4 −5 4

 .

(c) A matrix associated with the inverse, t−1
1
, of t1 is A−1

1
,

which we can calculate to be

A−1
1

=


− 1

12
1
12

1
4

0 1
3

1
6

1
4

1
12

− 1
12


then a simpler matrix associated with t−1

1
is

B =


1 −1 −3

0 −4 −2

−3 −1 1


The required projective transformation is therefore t :

[x] 7→ [Ax], where

A = A2B =


−2 −3 2

6 7 −5

4 5 4




1 −1 −3

0 −4 −2

3 −1 1



=


−8 12 14

21 −29 −37

−16 20 26

 .
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□

3.4 Use of Fundamental Theorem of

Projective Geometry

In Section 3.2 we described how an embedding plane π can

be used to represent projective space RP2. The Points of RP2

are represented by Euclidean points in π and the Lines of RP2

are represented by Euclidean lines in π.

In general, any Euclidean figure in an embedding plane cor-

responds to a projective figure in RP2, and visa versa. This cor-

respondence enables us to compare Euclidean theorems about

a figure in an embedding plane with projective theorems about

the corresponding projective figure. Provided that the theo-

rems are concerned exclusively with projective properties, such

as collinearity and incidence, then a Euclidean theorem will

hold if and only if the corresponding projective theorem holds.

3.4.1 Desargues’ Theorem and Pappus’ The-

orem

The advantage of interpreting a Euclidean theorem as a

projective theorem in this way is that we can often obtain a

much simpler proof of the theorem than would be possible us-
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ing Euclidean geometry directly. We illustrate this by using

projective geometry to prove the theorem of Desargues.

Theorem 1. (Desargues’ Theorem) Let △ABC and

∆A′B′C ′ be triangles in R2 such that the lines AA′, BB′

and CC ′ meet at a point U. Let BC and B′C ′ meet at

P,CA and C ′A′ meet at Q, and AB and A′B′ meet at R.

Then P,Q and R are collinear.

Proof: Because this theorem is concerned exclusively with the

projective properties of collinearity and incidence we can inter-

pret it as a projective theorem in RP2. Moreover, by the Fun-

damental Theorem of Projective Geometry we know that any

configuration of the theorem is projective-congruent to a config-

uration of the theorem in which A = [1, 0, 0], B = [0, 1, 0], C =

[0, 0, 1] and U = [1, 1, 1]. If we can prove the theorem in

this special case. then we can use the fact that projective-
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congruence preserves projective properties to deduce that the

theorem holds in general.

To prove the special case we use the algebraic techniques de-

scribed in Section 3.2. First observe that the Line AU passes

through the Points [1, 0, 0] and [1, 1, 1], and therefore has equa-

tion y = z. Since A′ is a Point on AU , it must have homoge-

neous coordinates of the form [a, b, b], for some real numbers a

and b. Now, b ̸= 0, since A ̸= A′; so we may write the homo-

geneous coordinates of A′ in the form [p, 1, 1] (where p = a/b

).

Similarly, the homogeneous coordinates of the Points B′ and

C ′ may be written in the form [1, q, 1] and [1, 1, r], respectively,

for some real numbers q and r.

We now find the Point P where BC and B′C ′ intersect.

The Line BC has equation x = 0. Since the Line B′C ′ passes

through the Points B′ = [1, q, 1] and C ′ = [1, 1, r], it must have

equation ∣∣∣∣∣∣∣∣
x y z

1 q 1

1 1 r

∣∣∣∣∣∣∣∣ = 0

which we may rewrite in the form

(qr − 1)x− (r − 1)y + (1− q)z = 0

It follows that at the Point P of intersection of the Lines BC

and B′C ′ we must have x = 0 and (r− 1)y = (1− q)z, so that
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P has homogeneous coordinates [0, 1 − q, r − 1] Similarly, the

Points Q and R have homogeneous coordinates [1− p, 0, r− 1]

and [1− p, q − 1, 0], respectively. Now, the Points P,Q and R

are collinear if ∣∣∣∣∣∣∣∣
0 1− q r − 1

1− p 0 r − 1

1− p q − 1 0

∣∣∣∣∣∣∣∣ = 0

But ∣∣∣∣∣∣∣∣
0 1− q r − 1

1− p 0 r − 1

1− p q − 1 0

∣∣∣∣∣∣∣∣
= −(1− q)

∣∣∣∣∣ 1− p r − 1

1− p 0

∣∣∣∣∣+ (r − 1)

∣∣∣∣∣ 1− p 0

1− p q − 1

∣∣∣∣∣
= −(1− q)(1− p)(1− r) + (r − 1)(1− p)(q − 1)

= 0.

It follows that P,Q and R are collinear, as asserted. The gen-

eral result now holds, by projective-congruence. □

When using the Fundamental Theorem to simplify proofs

of results in projective geometry, we do not usually refer to

projective-congruence. Instead, so long as the properties in-

volved are projective properties, we content ourselves with an

initial remark of the type: ’By the Fundamental Theorem of

Projective Geometry, we may choose the four Points..., no
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three of which are collinear, to be the triangle of reference

and the unit Point; that is, to have homogeneous coordinates

[1, 0, 0], [0, 1, 0], [0, 0, 1] and [1, 1, 1], respectively.

Next we use the Fundamental Theorem of Projective Ge-

ometry to prove Pappus’ Theorem.

Theorem 2. (Pappus’ Theorem) Let A, B and C be

three points on a line in R2, and let A′, B′ and C ′ be three

points on another line. Let BC ′ and B′C meet at P,CA′

and C ′A meet at Q, and AB′ and A′B meet at R. Then

P,Q,R are collinear.

Proof: We interpret the theorem as a projective theorem,

so: by the Fundamental Theorem of Projective Geometry we

may choose the four Points A, A′, P, R, no three of which are

collinear, to be the triangle of reference and the unit Point; that

is, to have homogeneous coordinates [1, 0, 0], [0, 1, 0], [0, 0, 1]

and [1, 1, 1], respectively.
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First observe that the Line AR passes through the Points

[1, 0, 0] and [1, 1, 1], and must therefore have equation y = z.

Since B′ is a Point on AR, it must have homogeneous coordi-

nates of the form [a, b, b] for some real numbers a and b. Now,

b ̸= 0 since A ̸= B′, so we may write the homogeneous coordi-

nates of B′ in the form [r, 1, 1] (where r = a/b ).

Similarly, the Point B lies on the Line x = z through the

Points A′ = [0, 1, 0] and R = [1, 1, 1], so it must have homoge-

neous coordinates of the form [1, s, 1]

Next we find the Point C where the Line AB intersects

the Line B′P . Since the Line AB passes through the Points

A = [1, 0, 0] and B = [1, s, 1], it must have equation y = sz.

Also since the Line B′P passes through the Points B′ = [r, 1, 1]

and P = [0, 0, 1] it must have equation x = ry. At the Point

C where AB meets B′P we have y = sz and x = ry, so C =

[rs, s, 1]
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Similarly, C ′ is the point where the Line BP intersects the

Line A′B′. Since B = [1, s, 1] and P = [0, 0, 1], BP has equa-

tion y = sx; and, since A′ = [0, 1, 0] and B′ = [r, 1, 1], A′B′ has

equation x = rz. It follows that C ′ = [r, rs, 1]

Finally we find the point Q where AC ′ intersects A′C. Since

the Line AC ′ passes through the Points A = [1, 0, 0] and C ′ =

[r, rs, 1] it must have equation y = rsz. Also the Line A′C

passes through the Points A′ = [0, 1, 0] and C = [rs, s, 1] so

it must have equation x = rsz. At the Point Q where AC ′

intersects A′C we have y = rsz and x = rsz, so Q = [rs, rs, 1]

To complete the proof we simply observe that the Points

R = [1, 1, 1], Q = [rs, rs, 1] and P = [0, 0, 1] all lie on the Line

x = y. It follows that P,Q and R are collinear. □

Although we can sometimes simplify the proof of a Eu-

clidean theorem by using projective geometry, there is another

more subtle reason for interpreting a Euclidean theorem as a

projective theorem. By doing so we can often avoid having to

make special provision for exceptional cases, such as when two

lines are parallel. In projective geometry, Lines which corre-

spond to a pair of parallel lines in an embedding plane actually

meet and are therefore no different to any other Lines.

As an example, consider the diagram . This illustrates the

situation that occurs in Pappus’ Theorem when the Point of

intersection R of A′B and AB′ is an ideal Point for the em-

bedding plane. The above proof of Pappus’ Theorem is able to
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cope with this situation because it uses arguments from RP2

! Our interpretation of the theorem on an embedding plane in

this situation is that the Points P and Q must be collinear with

the ideal Point R at which A′B and AB′ meet. That is, PQ

must be parallel to both A′B and AB′.

3.5 Cross-Ratio

3.5.1 Another Projective Property

Earlier. in Subsection 2.2.1. we noted that ratio of lengths

along a line is an affine property. Thus, in affine geometry, if

we are given two points P and Q on a line ℓ, then we can locate

the position of a third point R along ℓ by specifying the ratio

PR : RQ. In particular, it is possible to talk about the point

midway between P and Q.

In projective geometry it is meaningless to talk about the

Point midway between two other Points. In one embedding
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plane π a Point R may appear to be midway between the Points

P and Q, whereas in another embedding plane π′ the ratio

PR : RQ may be very different.

This ambiguity arises from the fact that perspectivities do

not preserve the ratio of lengths along a line, so: ratio of lengths

along a line is not a projective property.

In some embedding planes, such as the plane π′ illustrated

in the margin, the Point R does not even appear to lie between

P and Q, so betweenness is not a projective property either!

Fortunately, there is a quantity, known as cross-ratio, that is

preserved under all projective transformations. To see how this

is defined, consider four collinear Points A = [a], B = [b], C =

[c], D = [d] in RP2. We can express the fact that A,B,C,D

are collinear by writing c and d as linear combinations of a and

b. Thus we can write c = αa + βb and d = γa + δb for

suitable real numbers α, β, γ, δ.
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The cross-ratio is then defined to be the ratio of the ratios
β
α
and δ

γ
.

Definition. Let A,B,C,D be four collinear Points in RP2

represented by position vectors a,b, c,d, and let

c = αa+ βb and d = γa+ δb

Then the cross-ratio of A,B,C,D is

(ABCD) =
β

α

/
δ

γ
.

Of course, before we can be sure that this definition makes

sense, we must ensure that it does not depend on the particular

choice of position vectors a, b, c,d that are used to represent

the Points A,B,C,D. We shall check this shortly, but first we

illustrate how cross-ratios are calculated.

Example 1. Let A = [1, 2, 3], B = [1, 1, 2], C = [3, 5, 8], D =

[1,−1, 0] be Points of RP2. Calculate the cross-ratio (ABCD).

Solution: First, we have to find real numbers α and β such

that the following vector equation holds:

(3, 5, 8) = α(1, 2, 3) + β(1, 1, 2)

Comparing corresponding coordinates on both sides of this vec-
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tor equation, we deduce that

3 = α + β, 5 = 2α + β and 8 = 3α + 2β

Solving these equations gives α = 2, β = 1. Next, we find real

numbers γ and δ such that the vector equation

(1,−1, 0) = γ(1, 2, 3) + δ(1, 1, 2)

holds. Comparing corresponding coordinates on both sides of

this vector equation, we deduce that

1 = γ + δ,−1 = 2γ + δ and 0 = 3γ + 2δ

Solving these equations gives γ = −2, δ = 3. It follows from

the definition of cross-ratio that

(ABCD) =
β

α

/
δ

γ
=

1

2

/
3

−2
= −1

3
.

□

Theorem 1. The cross-ratio (ABCD) is independent of

the homogeneous coordinates that are used to represent

the collinear Points A,B,C,D.

Proof: Suppose that A = [a], B = [b], C = [c], D = [d], and

let

c = αa+ βb and d = γa+ δb (1)
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Now suppose that A = [a′] , B = [b′] .C = [c′] , D = [d′].

Then

a = aa′, b = bb′, c = cc′, d = dd′

where a, b, c, d are some non-zero real numbers. By substituting

these expressions into the equations (1), we obtain

cc′ = αaa′ + βbb′ and dd′ = γaa′ + δbb′

which we can rewrite in the form

c′ = α′a′ + β′b′ and d′ = γ′a′ + δ′b′ (2)

where α′ = αa/c, β′ = βb/c, γ′ = γa/d, δ′ = δb/d

We can now check that equations (1) and (2) yield the same

value for the cross-ratio:
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β′

α′

/
δ′

γ′ =
βb/c

αa/c

/
δb/d

γa/d

=
βb

αa

/
δb

γa

=
β

α

/
δ

γ
.

So, as expected, the cross-ratio is independent of the choice of

homogeneous coordinates. □

The next problem illustrates that although the value of the

cross-ratio (ABCD) is independent of the choice of homoge-

neous coordinates that are used to represent A,B,C, D, the

value of the cross-ratio does depend on the order in which the

Points A,B,C,D appear.

Theorem 2. Let A,B,C,D be four distinct collinear

Points in RP2, and let (ABCD) = k. Then

(BACD) = (ABDC) = 1/k

(ACBD) = (DBCA) = 1− k

Proof: Let a,b, c,d be any position vectors in R3 in the di-

rections of the Points A,B,C,D, respectively, of RP2, and let

α, β, γ, δ be real numbers such that

c = αa+ βb and d = γa+ δb.

Then, by definition of cross-ratio, the cross-ratio (ABCD) of
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the four Points A,B,C,D is the quantity

(ABCD) =
β

α

/
δ

γ
=

βγ

αδ
= k , say.

To determine (BACD), we interchange the roles of A and B

in the evaluation of ABCD above; it follows that, since

c = βb+ αa and d = δd+ γa

the cross-ratio (BACD) is the quantity

(BACD) =
α

β

/
γ

δ
=

αδ

βγ
=

1

k
.

To determine (ABDC), we interchange the roles of C and D

in the evaluation of (ABCD) above; it follows that, since

d = γa+ δb and c = αa+ βb,

the cross-ratio (ABDC) is the quantity

(ABDC) =
δ

γ

/
β

α
=

αδ

βγ
=

1

k
.

To evaluate (ACBD), we use the equations

c = αa+ βb and d = γa+ δb (3)

to express b and d in terms of a and c, as follows.
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From the first equation in (3) we have

b = (c− αa)/β

= (−α/β)a+ (1/β)c (4)

If we then substitute this expression for b into the second

equation in (3), we obtain

d = γa+ δ((−α/β)a+ (1/β)c)

= ((βγ − αδ)/β)a+ (δ/β)c (5)

It follows from the coefficients of a and c in equations (4) and

(5) that

(ACBD) =
1/β

−α/β

/
δ/β

(βγ − αδ)/β

= −
(
βγ − αδ

αδ

)
= 1− βγ

αδ

= 1− k

Finally, we can use the previous parts of the proof to evaluate

(DBCA), as follows:
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(DBCA) = 1 /(BDCA) (swap first two Points)

= (BDAC) (swap last two Points)

= 1-(BADC) (swap middle two Points)

= 1- 1/(ABDC) (swap first two Points)

= 1-(ABCD) (swap last two Points)

= 1-k

□

Earlier, we showed that the cross-ratio (ABCD) of the four

collinear Points A = [1, 2, 3], B = [1, 1, 2], C = [3, 5, 8], D =

[1,−1, 0] in RP2 is −1
3
. Theorem 2 enables us to deduce that

(BACD) = −3, (ABDC) = −3

(ACBD) = 4
3
, (DBCA) = 4

3
.

Problem 1. Let the P uints A = [1,−1,−1], B =

[1, 3,−21], C = [3.5,−5], D = [1,−5.0] be collinear Points of

RP2. By applying Theorem 2 to the solution of Problem 1(a),

determine the values of the cross-ratios (ABDC), (DBCA) and

(ACBD).

The next theorem confirms that cross-ratio is preserved by

projective transformations.

Theorem 3. Let t be a projective transformation, and let

A,B,C,D be any four collinear Points in RP2. If A′ =

327



t(A), B′ = t(B), C ′ = t(C), D′ = t(D), then

(ABCD) = (A′B′C ′D′)

Proof: Let t be the projective transformation t : [x] 7→ [Ax],

where A is an invertible 3× 3 matrix. If A = [a], B = [b], C =

[c], D = [d], and

a′ = Aa,b′ = Ab, c′ = Ac,d′ = Ad

then A′ = [a′] , B′ = [b′] , C ′ = [c′] , D′ = [d′]

Since A,B,C,D are collinear, we can write

c = αa+ βb and d = γa+ δb , (6)

so

(ABCD) =
β

α
/
δ

γ

Multiplying each equation in (6) through by A, we obtain

c′ = αa′ + βb′ and d′ = γa′ + δb′,

so that

(A′B′C ′D′) =
β

α
/
δ

γ

It follows that

(A′B′C ′D′) = (ABCD)

□

We now use Theorem 3 to prove that if four distinct Points
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on a Line are in perspective with four distinct Points on another

Line, then the cross-ratios of the four Points on each Line are

equal.

Theorem 4. Let A,B,C,D be four distinct Points on a

Line, and let A′, B′, C ′, D′ be four distinct Points on an-

other Line such that AA′, BB′, CC ′, DD′ all meet at a

Point U . Then

(ABCD) = (A′B′C ′D′)

Proof: By the Fundamental Theorem of Projective Geometry,

there is a unique projective transformation t which maps B

to B′, C to C ′, B′ to B, and C ′ to C. We shall show that

t(A) = A′ and t(D) = D′, and hence by Theorem 3 it follows

that (ABCD) = (A′B′C ′D′)

First observe that the composite t◦t fixes the PointsB,C,B′

and C ′. By the Fundamental Theorem of Projective Geometry,
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the only projective transformation which does this is the iden-

tity transformation, so t ◦ t = i and t = t−1.

Next observe that t maps the Line BC onto the Line B′C ′,

and vice versa; so the Point T at which BC and B′C ′ intersect

must be fixed by t. Also, t maps the Lines BB′ and CC ′ onto

themselves, so their Point of intersection U must be fixed by t.

Now let X be the image of A under t. Then X lies on B′C ′.

We want to show that X = A′.

Suppose that X ̸= A′; then AX cannot pass through U so

it must intersect BB′ at R and CC ′ at S, where R, S and U

are distinct Points.

Since t is self-inverse, it maps X back to A and therefore

maps AX onto itself. But this implies that t fixes the four

PointsR, S, T, U ; so by the Fundamental Theorem of Projective

Geometry t must be the identity transformation. This is a

contradiction with the hypothesis that the Lines ABCD and

A′B′C ′D′ are different. It follows that we must conclude that

X = A′, that is, t(A) = A′. A similar argument shows that

t(D) = D′.

Finally, it follows by Theorem 3 that (ABCD) =

(A′B′C ′D′), as required. □

In affine geometry, if we are given two points A and B, then

the ratio AC/CB uniquely determines a third point C on the

line AB. We now explore the analogous result for projective
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geometry, namely that if we are given any three collinear Points

A,B,C in RP2, then the value of the cross-ratio (ABCD)

uniquely determines a fourth Point D.

Theorem 5. (Unique Fourth Point Theorem) Let

A,B,C,X, Y be collinear Points in RP2 such that

(ABCX) = (ABCY )

Then X = Y .

Proof: Let A = [a], B = [b], C = [c], X = [x], Y = [y].

Since A,B,C,X, Y are collinear, it follows that there are real

numbers α, β, γ, δ, λ, µ such that

c = αa+ βb, x = γa+ δb and y = λa+ µb (7)

Then

(ABCX) =
βγ

αδ
and (ABCY ) =

βλ

αµ
.

Since (ABCX) = (ABCY ), it follows that

γ

δ
=

λ

µ

so λ = γµ/δ. If we substitute this value of λ into the expression

for y in equation (7), we obtain

y = (γµ/δ)a+ µb = (µ/δ)(γa+ δb) = (µ/δ)x.

Since y is a scalar multiple of x, it follows that X = Y , as
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required. □

In Theorem 4 we showed that the cross-ratios (ABCD) and

(A′B′C ′D′) are equal if the Points A′, B′, C ′, D′ are in perspec-

tive with the Points A,B,C,D. Our next result is a partial

converse of this result.

Theorem 6. Let A,B,C,D and A,E, F,G be two sets of

collinear Points (on different Lines in RP2 ) such that the

cross-ratios (ABCD) and (AEFG) are equal. Then the

Lines BE,CF and DG are concurrent.

Proof: Let P be the Point at which the Lines BE and CF

meet, and let X be the Point at which the Line PG meets the

Line ABCD. Then the Points A,B,C andX are in perspective

from P with the Points A,E, F and G, so that

(ABCX) = (AEFG)

Since we know that (AEFG) = (ABCD), it follows that

(ABCX) = (ABCD)

By Theorem 5, we must therefore have X = D. Hence the

Points A,B,C,D and the Points A,E, F,G are in perspective

from P . □

We can now use Theorem 6 together with the other proper-

ties of cross-ratio to give a second proof of Pappus’ Theorem.
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Theorem 7. (Pappus’ Theorem) Let A,B and C be

three Points on a Line in RP2, and let A′, B′ and C ′ be

three Points on another Line. Let BC ′ and B′C meet at

P,CA′ and C ′A meet at Q, and AB′ and A′B meet at R.

Then P,Q and R are collinear.

Proof: Let V be the Point of intersection of the two given

Lines. Also let the Lines BA′ and AC ′ meet at the Point S,

and the Lines BC ′ and CA′ meet at the Point T .

Now, the Points V,A′, B′, C ′ are in perspective from A with

the Points B, A′, R, S, so that

(V A′B′C ′) = (BA′RS) (8)

Similarly, the Points V,A′, B′, C ′ are in perspective from C

with the Points B, T, P, C ′, so that

(V A′B′C ′) = (BTPC ′) (9)
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It follows from equations (8) and (9) that

(BA′RS) = (BTPC ′)

so that by Theorem 6 the Lines A′T,RP, SC ′ are concurrent.

We may rephrase this statement as follows: the Line RP

passes through the Point where A′T meets SC ′; that is, the

Line RP passes through Q. In other words, P,Q and R are

collinear. □

3.5.2 Cross-Ratio on Embedding Planes

So far, we have calculated a given cross-ratio (ABCD) by

applying the definition of cross-ratio directly to the Points

A,B,C,D. However, it is sometimes convenient to evaluate

the cross-ratio by examining the representation of the Points

on some embedding plane.

Suppose that four collinear Points of RP2 pierce an em-

bedding plane π at the points A,B,C,D with position vectors

a,b, c,d, respectively. According to the Section Formula, we

can write c and d in the form

c = λa+ (1− λ)b and d = µa+ (1− µ)b.

where (1 − λ) : λ is the ratio AC : CB, and (1 − µ) : µ is the
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ratio AD : DB. Then from the definition of cross-ratio

(ABCD) =
1− λ

λ

/
1− µ

µ
,

so

(ABCD) =
AC

CB

/
AD

DB
. (10)

Example 2. In an embedding plane, the points A,B,C,D lie

in order along a line with the distances AB,BC,CD being 1

unit, 3 units and 2 units, respectively. Determine the cross-

ratios (ABCD), (BACD) and (ACBD).

Solution: Using equation (10) and the sign convention for

ratios, we have

(ABCD) =
AC

CB
/
AD

DB
=

(
−4

3

)
/

(
−6

5

)
=

10

9

(BACD) =
BC

CA
/
BD

DA
=

(
−3

4

)
/

(
−5

6

)
=

9

10

and

(ACBD) =
AB

BC
/
AD

DC
=

(
1

3

)
/

(
−6

2

)
= −1

9
.

□

Problem 2. The points A,B,C,D lie in order along a line

with the distances AB,BC,CD being 2 units, 1 unit and 3

units, respectively. Determine the cross-ratios (ABCD) and

(DBCA).

Sometimes one of the Points whose cross-ratio we are trying
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to find turns out to be an ideal Point for the embedding plane.

In such cases, formula (10) cannot he used since some of the

distances in the formula will not he defined.

To be specific, suppose that the Points A,B,C,D are

collinear, but that A is an ideal Point for the embedding plane

π, as shown in the margin. As before, we can let b, c,d be the

position vectors of the points B,C,D on π, but we take a to

be a unit vector along A. Then

c = −(CB)a+ b and d = −(DB)a+ b

From the definition of cross-ratio, it follows that

(ABCD) =
1

−CB

/
1

−DB
=

DB

CB
(11)

We can now obtain the corresponding formulas for the cases

where B,C or D is an ideal Point, by applying Theorem 2. For

example, if B is an ideal Point, then

(ABCD) = 1
(BACD)

(swap first two terms)

= (BADC) (swap last two terms)

= CA
DA

by equation (11).

We now summarize the various formulas for cross-ratio in the

form of a strategy, as follows.
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Strategy. To use an embedding plane to calculate the

cross-ratio of four collinear Points:

1. if the four Points pierce the embedding plane at

A,B,C,D, then

(ABCD) =
AC

CB
/
AD

DB

2. if one of the Points is an ideal Point for the embedding

plane, then

(ABCD) =
DB

CB
if A is ideal,

(ABCD) =
CA

DA
if B is ideal,

(ABCD) =
BD

AD
if C is ideal,

(ABCD) =
AC

BC
if D is ideal.

Example 3. Determine (ABCD) for the collinear points

A,B,C,D illustrated in the margin, where C is an ideal Point.

Solution:
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Since C is an ideal Point, we have

(ABCD) =
BD

AD
=

4

1
= 4

□

3.5.3 An Application of Cross-Ratio

Earlier, we described how projective geometry can be used

to obtain two dimensional representations of three-dimensional

scenes. We now describe how cross-ratios can be used to ob-

tain information about a three-dimensional scene from a two-

dimensional representation of the scene. We do this in the

context of aerial photography.

For simplicity, consider an aerial camera that takes pictures

on a flat film behind its lens, L, of features on a flat piece of

land in front of L. Since a point on the ground lies on the

same line through L as its image on the film, we can regard the
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process of taking a photograph as a perspectivity centred at L.

Since collinearity is invariant under a perspectivity, the im-

age of any line ℓ on the ground is a line on the film. Moreover,

the cross-ratio of any four points on ℓ must be equal to the

cross-ratio of their images on the film.

Example 4. An aerial camera photographs a car travelling

along a straight road on flat ground towards a junction. Before

the junction there are two warning signs at distances of 4 km

and 2 km from the juncrion. On the film the signs are 1 cm and

3 cm from the junction, and the car is 3
7
cm from the junction.

How far is the car from the junction on the ground?
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Solution: Let A and B denote the signs, C denote the car, and

D denote the junction, and let A′, B′, C ′, D′ be their images on

the film. Then

(A′B′C ′D′) =
A′C ′

C ′B′

/
A′D′

D′B′

=

(
−18/7

4/7

)/(
−3

1

)
=

3

2
.
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Now let the car be n km from the junction. Then

(ABCD) =
AC

CB

/
AD

DB

=

(
−4− n

2− n

)/(
−4

2

)
=

4− n

2(2− n)

Since (ABCD) and (A′B′C ′D′) must be equal, it follows that

4− n

2(2− n)
=

3

2

Hence

4− n = 3(2− n)

and so n = 1. That is, the car is 1 km from the junction. □

3.6 Exercises

Section 3.2

1. (a) Write down numbers a, b, c and d such that

[1, a, b] =

[
−1

2
, 3, 4

]
and [c, d, 2] = [3, 0, 1]
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(b) Which of the following homogeneous coordinates rep-

resent the same Point of RP2 as [4,−8, 2]?

(i) [1, 4,−2] (ii)
[
1
4
,−1

2
, 1
8

]
(iii)

[
−1

2
,−2, 1

]
(iv) [−2, 4,−1] (v)

[
−1

8
,−1

2
, 1
4

]
2. Determine an equation for each of the following Lines in

RP2 :

(a) the Line through the Points [1, 2, 3] and [3, 0,−2];

(b) the Line through the Points [1,−1,−1] and [2, 1,−3].

3. Determine whether each of the following sets of Points

are collinear:

(a) [1,−1, 0], [1, 0,−1] and [2,−1,−1];

(b) [1, 0, 1], [0, 1, 2] and [1, 2, 3].

4. Determine the Point of intersection of each of the follow-

ing pairs of Lines in RP2 :

(a) the Lines with equations x−2y+z = 0 and x−y−z =

0;

(b) the Lines with equations x + 2y + 5z = 0 and 3x −
y + z = 0.

5. Determine the Point of RP2 at which the Line through the

Points [8,−1, 2] and [1,−2,−1] meets the Line through

the Points [0, 1,−1] and [2, 3, 1].
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6. Determine the Point of RP2 at which the Line through

the Points [1, 2, 2] and [2, 3, 3] meets the Line through the

Points [0, 1, 2] and [0, 1, 3].

Section 3.3

In these exercises, you may find the following list of matrices

and their inverses useful.

A :


2 1 0

−1 0 1

0 1 1




−2 0 1

0 3 −2

1 −3 1




0 3 −1

2 0 −1

0 0 1




0 3 4

−1 3 2

3 −3 3



A−1 :


1 1 −1

−1 −2 2

1 2 −1




−1 −1 −1

−2
3

−1 −4
3

−1 −2 −2




5 −7 −2

3 −4 −4
3

−2 3 1


1. Determine which of the following transformations t of
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RP2 are projective transformations. For those that are

projective transformations, write down a matrix associ-

ated with t.

(a) t : [x, y, z] 7→ [2x, y + 3z, 1]

(b) t : [x, y, z] 7→ [x, x− y + 3z, x+ y]

(c) t : [x, y, z] 7→ [2y, y − 4z, x]

(d) t : [x, y, z] 7→ [x+ y − z, y + 3z, x+ 2y + 2z]

2. Determine the images of the Points [1, 2, 3], [0, 1, 0] and

[1,−1, 1] under the projective transformation t associated

with the matrix

A =


2 0 1

−1 1 0

0 1 1


3. Let

t1 : ⌊x, y, z] 7→ [2x+ y,−x+ z, y + z]

t2 : [x, y, z] 7→ [x+ y, 3x− z, 4y − 2z]

be projective transformations from RP2 to RP2.

(a) Write down matrices associated with each of t1 and

t2 .

(b) Determine formulas for t2 ◦ t1 and t2 ◦ t−1
1
.

4. Find the image of the Line x + 2y + 3z = 0 under the

projective transformation t1 defined in Exercise 3.
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5. Find the projective transformation t that maps the

Points [−1, 0, 0], [−3, 2, 0], [2, 0, 4], [1, 2,−5] to the Points

[2, 1, 0], [1, 0,−1], [0, 3,−1], [3,−1, 2], respectively.

6. Find the projective transformation t that maps the Points

[1, 0,−3], [1, 1,−2], [3, 3,−5], [6, 4,−13] to the Points

[3,−5, 3], [1
2
,−1, 0], [3,−5, 6], [8,−13, 12], respectively.

7. Determine matrices for the projective transformations

which map the Points [1, 0, 0], [0, 1, 0], [0, 0, 1] and [1, 1, 1]

onto the following Points:

(a) [−2, 0, 1], [0, 1,−1], [−1, 2,−1] and [−1, 1,−1];

(b) [0, 1, 0], [1, 0, 0], [−1,−1, 1] and [2, 1, 1];

(c) [0, 1,−3], [1, 1,−1], [4, 2, 3] and [7, 4, 3].

8. Use the results of Exercise 7 to determine the projective

transformations that map:

(a) the Points

[−2, 0, 1], [0, 1,−1], [−1, 2,−1], [−1, 1,−1]

to the Points

[0, 1, 0], [1, 0, 0], [−1,−1, 1], [2, 1, 1]

respectively;

345



(b) the Points

[0, 1, 0], [1, 0, 0], [−1,−1, 1], [2, 1, 1]

to the Points

[0, 1,−3], [1, 1,−1], [4, 2, 3], [7, 4, 3]

respectively;

(c) the Points

[0, 1,−3], [1, 1,−1], [4, 2, 3], [7, 4, 3]

to the Points

[−2.0.1].[0, 1,−1].[−1.2,−1].[−1, 1,−1]

respectively.

Section 3.4

1. For which of the following configurations of Points

A,B,C andD in RP2 is there a projective transformation

sending A,B,C to the triangle of reference and D to the

unit Point?
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2. Let ∆ABC be a triangle in R2, and let U be any point

of R2 that is not collinear with any two of the points

A,B,C. Let the Lines BC and AU meet at P,CA and

BU meet at Q, and AB and CU meet at R. Prove that

P,Q,R cannot be collinear.

3. Determine (ABCD) for the collinear points A,B,C,D

illustrated in the margin, where B is an ideal Point

4. Prove that:

(a) (ABCD) = AC
BC

if D is an ideal Point;

(b) (ABCD) = BD
AD

if C is an ideal Point.

5. Give a Euclidean interpretation of Desargues’ Theorem

on an embedding plane π in the case where Q is an ideal

Point for π.
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6. Let ∆ABC be a triangle in R2, and let U be any point of

R2 that is not collinear with any two of the points A,B

and C. Let the lines AU,BU and CU meet the lines

BC,CA and AB at the points A′, B′ and C ′, respectively.

Next, let the lines BC and B′C ′ meet at P,AC and A′C ′

meet at Q, and AB and A′B′ meet at R. Prove that P,Q

and R are collinear.

Hint: Let A,B,C be the vertices of the triangle of refer-

ence, and let U be the unit Point. Then determine the

homogeneous coordinates of the Points A′, B′ and C ′.

Section 3.5

1. For each of the following sets of Points A,B,C,D, calcu-

late the cross-ratio (ABCD).

(a) A = [2, 1, 3], B = [1, 2, 3], C = [8, 1, 9], D = [4,−1, 3]
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(b) A = [2, 1, 1], B = [−1, 1,−1], C = [1, 2, 0], D =

[−1, 4,−2]

(c) A = [−1, 1, 1], B = [0, 0, 2], C = [5,−5, 3], D =

[−3, 3, 7]

2. For the Points A,B,C,D in Exercise l(a), determine the

cross-ratios (BACD), (BDCA) and (ADBC)

3. Calculate the cross-ratio (ABCD) for each of theh fol-

lowing sets of collinear Points in RP2.

(a) A = [1,−1,−1], B = [1, 3,−2], C = [3, 5,−5], D =

[1,−5, 0]

(b) A = [1, 2, 3], B = [2, 2, 4], C = [−3,−5,−8], D =

[3,−3, 0]

4. For each set of collinear points A,B,C,D illustrated be-

low, calculate the cross-ratio (ABCD).

5. Calculate the cross-ratio (ABCD) for the collinear points

A,B,C,D illustrated below, where D is an ideal Point.
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6. The following diagram represents an aerial photograph

of a straight road on flat ground. At A there is a sign

’Junction 1 km ’, at B a sign ’Junction 1
2
km′, and C is

the road junction. Also, a police patrol car is at X, and

a bridge is at Y . The distances marked on the left of the

diagram are measured in cm from the photograph.

Calculate the actual distances (in km) of the patrol car

and the bridge from the junction.

7. An aerial camera photographs a car travelling along a

straight road on flat ground towards a junction. Before

the junction there are two warning signs, at distances of

2 km and 3 km from the junction

350



On the film the signs are 4 cm and 6 cm from the junc-

tion, and the car is 1 cm from the junction. How far is

the car from the junction on the ground?

If two lines that are known to be parallel on the ground

appear to meet on the film, then the point of intersec-

tion on the film corresponds to the ideal Point where the

’parallel lines meet’. We can therefore use the above tech-

nique even when one of the Points is ideal, for we can use

the second part of the strategy in Subsection 3.5.2 to cal-

culate the cross-ratio whenever one of the Points is ideal.

8. An aerial camera photographs a train travelling between

two stations along a straight traek 8n flat ground. The

stations are 50 km apart. When the film is inspected, the

stations are 4 cm apart, the train is midway between the

stations, and the rails appear to meet (or vanish) 4 cm

beyond the station towards which the train is travelling.

How far has the train to travel to the next station?
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